Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists publish complete genetic blueprint of key biofuels crop

Scientists at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) and several partner institutions have published the sequence and analysis of the complete genome of sorghum, a major food and fodder plant with high potential as a bioenergy crop.

The genome data will aid scientists in optimizing sorghum and other crops not only for food and fodder use, but also for biofuels production. The comparative analysis of the sorghum genome appears in the January 29 edition of the journal Nature.

Prized for its drought resistance and high productivity, sorghum is currently the second most prevalent biofuels crop in the United States, behind corn. Grain sorghum produces the same amount of ethanol per bushel as corn while utilizing one-third less water. As the technology for producing "cellulosic" (whole plant fiber-based) biofuels matures, sorghum's rapid growth--rising from eight to 15 feet tall in one season--is likely to make it desirable as a cellulosic biofuels "feedstock."

"This is an important step on the road to the development of cost-effective biofuels made from nonfood plant fiber," said Anna C. Palmisano, DOE Associate Director of Science for Biological and Environmental Research. "Sorghum is an excellent candidate for biofuels production, with its ability to withstand drought and prosper on more marginal land. The fully sequenced genome will be an indispensable tool for researchers seeking to develop plant variants that maximize these benefits."

Plant DNA is often notoriously difficult to analyze because of large sections of repetitive sequence and sorghum was no different. Jeremy Schmutz of the DOE JGI partner HudsonAlpha Institute for Biotechnology (formerly the Stanford Human Genome Center) and John Bowers of the University of Georgia pointed to these complex repetitive regions as accounting for the significant size difference between the rice and sorghum genomes, while also suggesting a common overall genome structure for grasses.

"Sorghum will serve as a template genome to which the code of the other important biofuel feedstock grass genomes--switchgrass, Miscanthus, and sugarcane--will be compared," said Andrew Paterson, the publication's first author and Director of the Plant Genome Mapping Laboratory, University of Georgia.

Scientists and industry officials say that completion of the sorghum genome will aid with sequencing of numerous other related plants, including other key potential bioenergy crops.

"I expect our improved understanding of the sorghum genome to have a major impact on the development of improved bioenergy crops for the emerging biofuels and renewable power industries," said Neal Gutterson, President and Chief Executive Officer of Mendel Biotechnology.

Sorghum's is only the second grass genome to be completely sequenced to date, after rice. With approximately 730 million nucleotides, sorghum's genome is nearly 75 percent larger than the size of rice.

Researchers used the whole genome "shotgun" method of sequencing first pioneered in the Human Genome Project. In this method, short random DNA fragments are partially sequenced and then analyzed by powerful supercomputers to reconstruct the original genome sequence. The repetitive sections and the length of the sorghum genome made assembling this "puzzle" a highly challenging computational problem.

By comparing sorghum's assembled code with rice's, the scientists were able to provide a "reality check" for rice's previously published estimate of protein coding genes.

"We found that over 10,000 proposed rice genes are actually just fragments," said DOE JGI's Dan Rokhsar, the publication's co-corresponding author. "We are confident now that rice's gene count is similar to sorghum's at 30,000, typical of grasses."

David Gilbert | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>