Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists prove ground and tree salamanders have same diets

08.09.2014

Why did the salamander climb the tree? Not to get a different meal, according to a new study

Salamanders spend the vast majority of their lives below ground and surface only for short periods of time and usually only on wet nights. When they do emerge, salamanders can be spotted not only on forest floors but also up in trees and on other vegetation, oftentimes climbing as high as 8 feet up. Given their infrequent appearances aboveground, it has never been clear to biologists why salamanders take time to climb vegetation. Researchers at the University of Missouri recently conducted a study testing a long-standing hypothesis that salamanders might climb vegetation for food.

“Previous research suggested that plant climbing might be a way for salamanders to access additional prey items, like aphids and leaf hoppers, that are not available on the ground,” said Grant Connette, a biologist who helped carry out the study while a graduate student in the Division of Biological Sciences at MU.

Connette and his colleagues tested the hypothesis by collecting red-legged salamanders (Plethodon sharmani) and examining their stomach contents. The researchers captured an equal number of salamanders on the ground and up on trees or shrubs and then brought them back to the lab, where they anesthetized them and flushed the stomachs of their contents. The salamanders – minus their last meals – were then safely returned to their exact capture location.

The stomach contents were preserved in alcohol and then subsequently dissected apart. Students, assisted by MU Curators’ Professor James Carrel and Research Entomologist Mark Deyrup with the Archbold Biological Station in Florida, identified each prey item to the lowest taxonomic level and calculated its mass. At the end, they had a laundry list of things found in the guts of these salamanders.

“The dominant groups were mites, millipedes, beetles, and an assortment of ants,” said Carrel. “What was surprising was that the [salamanders] collected on trees did not have anything one would associate with a plant-feeding insect, like aphids.”

The diet of the salamanders captured on the ground was the same as the diet of salamanders captured sitting high up on vegetation.

“We found no evidence that climbing allows these salamanders to more fully exploit available food resources, which instead suggests that other mechanisms, such as competition or predator avoidance, might be important influences on salamander populations,” said Connette.

The study was prompted by the research of Curators’ Professor Ray Semlitsch, who has been studying salamander populations in the Appalachian Mountains since 2005. The mountain range’s moist forests make it a global hot spot for a variety of salamander species.

Connette said that by testing a possible explanation for climbing behavior, the research also provides important background information about how salamanders can exist in high densities in North American forests.

The study, “Relationship between diet and microhabitat use of red-legged salamanders (Plethodon shermani) in southwestern North Carolina,” appeared in the journal Copeia.

Written by: Melody Kroll

Melody Kroll | Eurek Alert!
Further information:
http://biology.missouri.edu/news/why-did-the-salamander-climb-the-tree-not-to-get-a-different-meal-according-to-a-new-study/

Further reports about: climbing forests mechanisms populations resources salamanders species stomach

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>