Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists prove ground and tree salamanders have same diets

08.09.2014

Why did the salamander climb the tree? Not to get a different meal, according to a new study

Salamanders spend the vast majority of their lives below ground and surface only for short periods of time and usually only on wet nights. When they do emerge, salamanders can be spotted not only on forest floors but also up in trees and on other vegetation, oftentimes climbing as high as 8 feet up. Given their infrequent appearances aboveground, it has never been clear to biologists why salamanders take time to climb vegetation. Researchers at the University of Missouri recently conducted a study testing a long-standing hypothesis that salamanders might climb vegetation for food.

“Previous research suggested that plant climbing might be a way for salamanders to access additional prey items, like aphids and leaf hoppers, that are not available on the ground,” said Grant Connette, a biologist who helped carry out the study while a graduate student in the Division of Biological Sciences at MU.

Connette and his colleagues tested the hypothesis by collecting red-legged salamanders (Plethodon sharmani) and examining their stomach contents. The researchers captured an equal number of salamanders on the ground and up on trees or shrubs and then brought them back to the lab, where they anesthetized them and flushed the stomachs of their contents. The salamanders – minus their last meals – were then safely returned to their exact capture location.

The stomach contents were preserved in alcohol and then subsequently dissected apart. Students, assisted by MU Curators’ Professor James Carrel and Research Entomologist Mark Deyrup with the Archbold Biological Station in Florida, identified each prey item to the lowest taxonomic level and calculated its mass. At the end, they had a laundry list of things found in the guts of these salamanders.

“The dominant groups were mites, millipedes, beetles, and an assortment of ants,” said Carrel. “What was surprising was that the [salamanders] collected on trees did not have anything one would associate with a plant-feeding insect, like aphids.”

The diet of the salamanders captured on the ground was the same as the diet of salamanders captured sitting high up on vegetation.

“We found no evidence that climbing allows these salamanders to more fully exploit available food resources, which instead suggests that other mechanisms, such as competition or predator avoidance, might be important influences on salamander populations,” said Connette.

The study was prompted by the research of Curators’ Professor Ray Semlitsch, who has been studying salamander populations in the Appalachian Mountains since 2005. The mountain range’s moist forests make it a global hot spot for a variety of salamander species.

Connette said that by testing a possible explanation for climbing behavior, the research also provides important background information about how salamanders can exist in high densities in North American forests.

The study, “Relationship between diet and microhabitat use of red-legged salamanders (Plethodon shermani) in southwestern North Carolina,” appeared in the journal Copeia.

Written by: Melody Kroll

Melody Kroll | Eurek Alert!
Further information:
http://biology.missouri.edu/news/why-did-the-salamander-climb-the-tree-not-to-get-a-different-meal-according-to-a-new-study/

Further reports about: climbing forests mechanisms populations resources salamanders species stomach

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>