Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Probe the Role of Motor Protein in Hearing Loss

08.03.2011
From grinding heavy metal to soothing ocean waves, the sounds we hear are all perceptible thanks to the vibrations felt by tiny molecular motors in the hair cells of the inner ear.

Researchers at the University of Pennsylvania School of Medicine have now identified the mechanism by which a single amino acid change can disrupt the normal functioning of one of the critical components of that physiology -- a molecular motor protein called myo1c, which resides in the cochlea of the inner ear.

The mutation (called R156W), was first identified in an individual suffering from cochlear hearing loss, and it affects the way the myo1c protein interacts with proteins known as actin filaments, another crucial component of the sensory apparatus of the inner ear. This interaction is essential for normal hearing, and scientists have already traced other causes of hearing loss to previously known mutations that interrupt it.

Now Michael Greenberg and his colleagues at UPenn have examined the biochemical and mechanical properties of the mutant myosin protein. Comparing constructs of the normal, "wild-type" protein to the R156W mutant, they examined the two proteins' kinetics and motility and discovered the mutant has a reduced sensitivity to mechanical loads and a lower duty ratio, meaning it spends less time attached to actin filaments.

Though the cochlear cell myo1c defects are associated with hearing loss, how this mutation causes the disease is still a mystery. The exact molecular role of myo1c is hazy, although it has been linked to several important cellular processes including hearing and insulin stimulated glucose uptake within cells. Understanding the defects caused by the R156 mutation could help to solve the puzzle.

“R156 is a highly conserved residue throughout the myosin superfamily. The fact that mutation of this residue affects the myosin duty ratio and strain sensitivity may very well be applicable in other myosins as well. In the long term, we hope to gain greater insight into the mechanism of myosin strain sensitivity and its role in mechanotransduction,” says Greenberg.

The group’s research is funded by the National Institutes of Health and the American Heart Association.

The Presentation, "A HEARING-LOSS ASSOCIATED MYO1C MUTATION (R156W) DECREASES THE MYOSIN DUTY RATIO AND FORCE SENSITIVITY" is at 1:45 p.m. on Sunday, March 6, 2011 in Hall C of the Baltimore Convention Center.

ABSTRACT: http://tinyurl.com/4llnmve

MORE MEETING INFORMATION

Each year, the Biophysical Society Annual Meeting brings together more than 6,000 scientists and hosts more than 4,000 poster presentations, 200 exhibits, and more than 20 symposia. The largest meeting of its type in the world, the Biophysical Society Annual Meeting retains its small-meeting flavor through its subgroup meetings, platform sessions, social activities, and committee programs.

QUICK LINKS
Meeting Home Page:
http://www.biophysics.org/2011meeting
General Meeting Information:
http://www.biophysics.org/GeneralInfo/Overview/tabid/2062/Default.aspx
Search abstracts:
http://www.abstractsonline.com/plan/start.aspx?mkey={FEA830A5-24AD-47F3-8E61-FCA29F5FEF34}
PRESS REGISTRATION
The Biophysical Society invites credentialed journalists, freelance reporters working on assignment, and public information officers to attend its Annual Meeting for free. For more information on registering as a member of the press, please contact Ellen Weiss at eweiss@biophysics.org or 240-290-5606. Also see: http://www.biophysics.org/Registration/Press/tabid/2148/Default.aspx
ABOUT THE BIOPHYICAL SOCIETY
The Biophysical Society, founded in 1956, is a professional, scientific society established to encourage development and dissemination of knowledge in biophysics. The society promotes growth in this expanding field through its annual meeting, monthly journal, and committee and outreach activities. Its over 9,000 members are located throughout the U.S. and the world, where they teach and conduct research in colleges, universities, laboratories, government agencies, and industry. For more information on the society or the 2011 Annual Meeting, visit www.biophysics.org

Ellen R. Weiss | Newswise Science News
Further information:
http://www.biophysics.org
http://www.aip.org

More articles from Life Sciences:

nachricht Taking screening methods to the next level
17.10.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

‘Find the Lady’ in the quantum world

17.10.2017 | Physics and Astronomy

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>