Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists probe the energy transfer process in photosynthetic proteins

03.08.2011
Researchers have developed a new method to probe the fundamental workings of photosynthesis. The new experimental technique could help scientists better understand the nitty-gritty details of nature's amazingly efficient sunlight-to-fuel conversion system.

Plants and other photosynthetic organisms grow by harvesting the sun's energy and storing it in chemical bonds.

Antenna proteins, which are made up of multiple light-absorbing pigments, capture sunlight over a large surface area and then transfer the energy through a series of molecules to a reaction center where it kick-starts the process of building sugars. Photosynthetic processes take place is spaces so tightly packed with pigment molecules that strange quantum mechanical effects can come into play.

When a pigment molecule absorbs light, one of its electrons is boosted into an "excited" higher energy state. If multiple pigments in a protein absorb light nearly simultaneously, their wave-like excitation states may overlap and become linked to one another, affecting the path of the energy transfer.

Researchers from the University of California, Berkeley, led by Graham Fleming, discovered they could test whether this overlap had occurred. The scientists excited a well-studied photosynthetic antenna protein, called Fenna-Matthews-Olson (FMO), with two different frequencies of laser-light.

When the researchers used a third laser pulse to prompt the protein to release energy, they found it emitted different frequencies than those it had received, a sign that the two excitation states had linked. Alternative methods for observing overlapping excitations had been proposed before, but the new technique may be easier to implement since it relies only on frequency —or color—shifts, and not on precisely timed pulses.

"It is a relatively simple task to separate colors from each other," says team member Jahan Dawlaty, who also noted that the evidence of overlap was not hidden among other optical effects, as it might be when using a different technique. The team's results are published in the American Institute of Physics' Journal of Chemical Physics (JCP). The new method could be used to create a catalogue of the various excitation states in FMO and their potential combinations, the team says.

"The experiment is interesting and was carried out in a novel way," says Shaul Mukamel, a chemist at University of California, Irvine, who was not part of the research team. Mukamel noted that the technique might also be applied to larger complexes and reactions centers. Probing energy levels and pigment couplings in photosynthetic systems is essential to understanding, modeling, and testing the function of these systems, he says.

And, with better understanding, human engineers might one day be able to capitalize on the same energy conversion tactics that photosynthetic organisms have developed over billions of years, notes Ed Castner, editor of JCP and a chemist at Rutgers University in New Jersey.

"The annual total for human energy usage on our planet is roughly equivalent to the amount of light energy incident on the planet in a single hour," says Castner. "To address our needs for safe, sustainable and renewable fuels, it is clearly urgent to understand how photosynthesis works."

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>