Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists prevent cerebral palsy-like brain damage in mice

03.11.2011
Scientists at Washington University School of Medicine in St. Louis have shown that a protein may help prevent the kind of brain damage that occurs in babies with cerebral palsy.

Using a mouse model that mimics the devastating condition in newborns, the researchers found that high levels of the protective protein, Nmnat1, substantially reduce damage that develops when the brain is deprived of oxygen and blood flow. The finding offers a potential new strategy for treating cerebral palsy as well as strokes, and perhaps Alzheimer's, Parkinson's and other neurodegenerative diseases. The research is reported online in the Proceedings of the National Academy of Sciences.

"Under normal circumstances, the brain can handle a temporary disruption of either oxygen or blood flow during birth, but when they occur together and for long enough, long-term disability and death can result," says senior author David M. Holtzman, MD, the Andrew and Gretchen Jones Professor and head of the Department of Neurology. "If we can use drugs to trigger the same protective pathway as Nmnat1, it may be possible to prevent brain damage that occurs from these conditions as well as from neurodegenerative diseases."

The researchers aren't exactly sure how Nmnat1 protects brain cells, but they suspect that it blocks the effects of the powerful neurotransmitter glutamate. Brain cells that are damaged or oxygen-starved release glutamate, which can overstimulate and kill neighboring nerve cells.

The protective effects of Nmnat1 were first identified five years ago by Jeff Milbrandt, MD, PhD, the James S. McDonnell Professor and head of genetics at Washington University, who showed the protein can prevent damage to peripheral nerves in the body's extremities. Phillip Verghese, PhD, a postdoctoral research associate in Holtzman's laboratory, wanted to see if the protein's protective effects extend to the brain.

"Cerebral palsy is sometimes attributable to brain injury that stems from inadequate oxygen and blood flow to the brain before, during or soon after birth," says first author Philip Verghese, PhD, a postdoctoral research associate in Holtzman's laboratory. "We wanted to see if those injuries still occur in the presence of increased levels of Nmnat1."

The researchers evaluated the effects of oxygen and blood flow deprivation in normal mice and in mice genetically engineered to produce higher-than-normal levels of Nmnat1.

As early as six hours later, the mice with enhanced Nmnat1 had markedly less injury to the brain.

A week later, when the researchers measured the amount of tissue atrophy in the brain, they found that mice with high Nmnat1 had experienced far less damage to key brain structures like the hippocampus and cortex, which are known to be injured in cerebral palsy.

In a series of follow-up studies with collaborators Jeff Neil, MD, PhD, the Allen P. and Josephine B. Green Professor of Neurology, and Yo Sasaki, PhD, research assistant professor of genetics, the scientists were surprised at what they saw.

MRI scans of the brain showed that Nmnat1 might be even more protective than the first experiment suggested. In mice with boosted Nmnat1 levels, the scans revealed little to no brain damage.

Laboratory studies of the brain cells indicated that Nmnat1 prevents a particular form of cell death.

"There are two types of injury in the developing brain from inadequate oxygen and blood flow," Holtzman explains. "One is necrosis, where cells swell rapidly, burst and die; another is apoptosis, where the cells shrink and die. We found that Nmnat1 prevents necrosis."

Necrosis is believed to be responsible for killing brain cells in ischemic stroke in adults, which temporarily cuts off oxygen and blood flow to the brain. Dying cells flood the surrounding area with a glutamate, which can harm nearby cells. When researchers simulated this process in a test tube, fewer brain cells died in the presence of high Nmnat1.

Scientists in Milbrandt's and Holtzman's laboratories are following up on several potential explanations for Nmnat1's protective effects. Holtzman plans to test the protein in other models of brain injuries and neurodegenerative diseases.

Verghese PB, Sasaki Y, Donghan Y, Stewart F, Sabar F, Finn MB, Wroge CM, Mennerick S, Neil JJ, MIlbrandt J, Holtzman DM. NAD-synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1 (Nmnat1) protects against acute neurodegeneratoin in developing CNS by inhibiting excitotoxic-necrotic cell death. Proceedings of the National Academy of Sciences, online Oct. 31, 2011.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>