Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists prevent cerebral palsy-like brain damage in mice

Scientists at Washington University School of Medicine in St. Louis have shown that a protein may help prevent the kind of brain damage that occurs in babies with cerebral palsy.

Using a mouse model that mimics the devastating condition in newborns, the researchers found that high levels of the protective protein, Nmnat1, substantially reduce damage that develops when the brain is deprived of oxygen and blood flow. The finding offers a potential new strategy for treating cerebral palsy as well as strokes, and perhaps Alzheimer's, Parkinson's and other neurodegenerative diseases. The research is reported online in the Proceedings of the National Academy of Sciences.

"Under normal circumstances, the brain can handle a temporary disruption of either oxygen or blood flow during birth, but when they occur together and for long enough, long-term disability and death can result," says senior author David M. Holtzman, MD, the Andrew and Gretchen Jones Professor and head of the Department of Neurology. "If we can use drugs to trigger the same protective pathway as Nmnat1, it may be possible to prevent brain damage that occurs from these conditions as well as from neurodegenerative diseases."

The researchers aren't exactly sure how Nmnat1 protects brain cells, but they suspect that it blocks the effects of the powerful neurotransmitter glutamate. Brain cells that are damaged or oxygen-starved release glutamate, which can overstimulate and kill neighboring nerve cells.

The protective effects of Nmnat1 were first identified five years ago by Jeff Milbrandt, MD, PhD, the James S. McDonnell Professor and head of genetics at Washington University, who showed the protein can prevent damage to peripheral nerves in the body's extremities. Phillip Verghese, PhD, a postdoctoral research associate in Holtzman's laboratory, wanted to see if the protein's protective effects extend to the brain.

"Cerebral palsy is sometimes attributable to brain injury that stems from inadequate oxygen and blood flow to the brain before, during or soon after birth," says first author Philip Verghese, PhD, a postdoctoral research associate in Holtzman's laboratory. "We wanted to see if those injuries still occur in the presence of increased levels of Nmnat1."

The researchers evaluated the effects of oxygen and blood flow deprivation in normal mice and in mice genetically engineered to produce higher-than-normal levels of Nmnat1.

As early as six hours later, the mice with enhanced Nmnat1 had markedly less injury to the brain.

A week later, when the researchers measured the amount of tissue atrophy in the brain, they found that mice with high Nmnat1 had experienced far less damage to key brain structures like the hippocampus and cortex, which are known to be injured in cerebral palsy.

In a series of follow-up studies with collaborators Jeff Neil, MD, PhD, the Allen P. and Josephine B. Green Professor of Neurology, and Yo Sasaki, PhD, research assistant professor of genetics, the scientists were surprised at what they saw.

MRI scans of the brain showed that Nmnat1 might be even more protective than the first experiment suggested. In mice with boosted Nmnat1 levels, the scans revealed little to no brain damage.

Laboratory studies of the brain cells indicated that Nmnat1 prevents a particular form of cell death.

"There are two types of injury in the developing brain from inadequate oxygen and blood flow," Holtzman explains. "One is necrosis, where cells swell rapidly, burst and die; another is apoptosis, where the cells shrink and die. We found that Nmnat1 prevents necrosis."

Necrosis is believed to be responsible for killing brain cells in ischemic stroke in adults, which temporarily cuts off oxygen and blood flow to the brain. Dying cells flood the surrounding area with a glutamate, which can harm nearby cells. When researchers simulated this process in a test tube, fewer brain cells died in the presence of high Nmnat1.

Scientists in Milbrandt's and Holtzman's laboratories are following up on several potential explanations for Nmnat1's protective effects. Holtzman plans to test the protein in other models of brain injuries and neurodegenerative diseases.

Verghese PB, Sasaki Y, Donghan Y, Stewart F, Sabar F, Finn MB, Wroge CM, Mennerick S, Neil JJ, MIlbrandt J, Holtzman DM. NAD-synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1 (Nmnat1) protects against acute neurodegeneratoin in developing CNS by inhibiting excitotoxic-necrotic cell death. Proceedings of the National Academy of Sciences, online Oct. 31, 2011.

Michael C. Purdy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>