Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists post lower speed limit for cell-signaling protein assembly

30.07.2010
The apparently random self-assembly of molecular threads into the proteins that make the body work is far less frantic than previously thought, Michigan State University scientists say. That discovery could be a key to help unlock the nature of some diseases.

How proteins spontaneously “fold” from wiggling chains of amino acids into a wide variety of functional – or malfunctioning – three-dimensional molecules is one of the biggest mysteries in biochemistry.

“People thought they understood how protein diffusion worked, but now our data suggests they’re wrong by a factor of 1,000,” MSU physics and astronomy assistant professor Lisa Lapidus said. “Now we can start changing the models – we’ve been trying to solve protein folding for 50 years, and now we’re advancing our fundamental understanding of what unfolded proteins do before they fold.”

The findings were published online by the science journal Proceedings of the National Academy of Sciences. Lapidus was joined in the research by University of Zurich Institute of Physical Chemistry researcher Steven Waldauer, whose recent MSU doctoral dissertation formed the basis of the study, and University of California, Davis, scientist Olgica Bakajin.

Proteins, which do most of the work in the body’s cells, are chain molecules composed of amino acids. The order in which the amino acids are assembled was charted by the Human Genome Project, but the function of the protein depends on its shape, and how a protein folds is not yet understood. Much of the process is random and diffusive, like sugar moving through an unstirred cup of coffee.

Most proteins can fold in milliseconds, although there are so many possible combinations that left to chance it’s physically impossible, scientists agree. So they speculate that there must be built-in folding pathways – but those remain unproved. Now physics is helping make sense of biology, posting a lower speed limit for proteins as they spontaneously assemble into their lowest-energy, so-called natural state – like a relaxed spring.

“In order to measure how quickly this random, unfolded state changes confirmations, we had to design an entirely new apparatus as well as design and fabricate a microfluidic chip capable of observing proteins within a fraction of a millisecond after being allowed to refold,” Waldauer explained. Two lasers were employed to observe the formation of the immunoglobulin proteins.

“We found that the nature of the unfolded state is far from intuitive and that a protein will change from one random conformation to another much more slowly than previously thought,” he said.

Scientists know that errors can occur in folding, and these are associated with a variety of diseases including Alzheimer’s, ALS, cystic fibrosis and diabetes. Lapidus and colleagues speculate that the rate of the process could influence the outcome. Proteins that wiggle more rapidly, for example, may be more prone to sticking together and causing plaques such as those in Alzheimer's. The team’s discovery may lead to new therapeutic strategies for this class of diseases.

“I believe this measurement of intramolecular diffusion is something that will be crucial for any subsequent studies of protein folding or mis-folding,” Lapidus said.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Mark Fellows | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

OLED production facility from a single source

29.03.2017 | Trade Fair News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>