Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Pinpoint Gene Variations Linked to Higher Risk of Bipolar Disorder

11.10.2012
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have identified small variations in a number of genes that are closely linked to an increased risk of bipolar disorder, a mental illness that affects nearly six million Americans, according to the National Institute of Mental Health.

“Using samples from some 3,400 individuals, we identified several new variants in genes closely associated with bipolar disorder,” said Scripps Florida Professor Ron Davis, who led the new study, which was published recently by the journal Translational Psychiatry.

A strong tendency towards bipolar disorder runs in families; children with a parent or sibling who has bipolar disorder are four to six times more likely to develop the illness, according to the National Institute of Mental Health.

While the genetic basis for bipolar disorder is complex and involves multiple genes, it appears to be associated with a biochemical pathway known as cyclic adenosine monophosphate (cAMP) signaling system. The Davis laboratory and others have previously shown that the cAMP signaling plays a critical role in learning and memory processes. The new study focused on this signaling pathway.

“As far as I know, this has not been done before—to query a single signaling pathway,” said Davis. “This is a new approach. The idea is if there are variants in one gene in the pathway that are associated with bipolar disorder, it makes sense there would be variants in other genes of the same signaling pathway also associated with the disorder.”

The new study examined variations in 29 genes found in the two common types of bipolar disorder—bipolar disorder I (the most common form and the most severe) and bipolar disorder II. Genes from a total of 1,172 individuals with bipolar disorder I; 516 individuals with bipolar disorder II; and 1,728 controls were analyzed.

Several statistically significant associations were noted between bipolar disorder I and variants in the PDE10A gene. Associations were also found between bipolar disorder II and variants in the DISC1 and GNAS genes.

Davis noted that the location of PDE10A gene expression in the striatum, the part of the brain associated with learning and memory, decision making and motivation, makes it especially interesting as a therapeutic target.

The first author of the study, “Genetic Association of Cyclic AMP Signaling Genes with Bipolar Disorder,” is Merry-Lynn McDonald of the Baylor College of Medicine. Other authors include Courtney MacMullen of TSRI, and Dajiang (Jeff) Liu and Suzanne M. Leal of the Baylor College of Medicine. For more information on the study, see http://www.nature.com/tp/journal/v2/n10/full/tp201292a.html.

The study was supported by the National Institutes of Health (grant number MH074791).

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, Scripps Research has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-8134
Fax: 858-784-8136
press@scripps.edu

Eric Sauter | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>