Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Pinpoint Gene Variations Linked to Higher Risk of Bipolar Disorder

11.10.2012
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have identified small variations in a number of genes that are closely linked to an increased risk of bipolar disorder, a mental illness that affects nearly six million Americans, according to the National Institute of Mental Health.

“Using samples from some 3,400 individuals, we identified several new variants in genes closely associated with bipolar disorder,” said Scripps Florida Professor Ron Davis, who led the new study, which was published recently by the journal Translational Psychiatry.

A strong tendency towards bipolar disorder runs in families; children with a parent or sibling who has bipolar disorder are four to six times more likely to develop the illness, according to the National Institute of Mental Health.

While the genetic basis for bipolar disorder is complex and involves multiple genes, it appears to be associated with a biochemical pathway known as cyclic adenosine monophosphate (cAMP) signaling system. The Davis laboratory and others have previously shown that the cAMP signaling plays a critical role in learning and memory processes. The new study focused on this signaling pathway.

“As far as I know, this has not been done before—to query a single signaling pathway,” said Davis. “This is a new approach. The idea is if there are variants in one gene in the pathway that are associated with bipolar disorder, it makes sense there would be variants in other genes of the same signaling pathway also associated with the disorder.”

The new study examined variations in 29 genes found in the two common types of bipolar disorder—bipolar disorder I (the most common form and the most severe) and bipolar disorder II. Genes from a total of 1,172 individuals with bipolar disorder I; 516 individuals with bipolar disorder II; and 1,728 controls were analyzed.

Several statistically significant associations were noted between bipolar disorder I and variants in the PDE10A gene. Associations were also found between bipolar disorder II and variants in the DISC1 and GNAS genes.

Davis noted that the location of PDE10A gene expression in the striatum, the part of the brain associated with learning and memory, decision making and motivation, makes it especially interesting as a therapeutic target.

The first author of the study, “Genetic Association of Cyclic AMP Signaling Genes with Bipolar Disorder,” is Merry-Lynn McDonald of the Baylor College of Medicine. Other authors include Courtney MacMullen of TSRI, and Dajiang (Jeff) Liu and Suzanne M. Leal of the Baylor College of Medicine. For more information on the study, see http://www.nature.com/tp/journal/v2/n10/full/tp201292a.html.

The study was supported by the National Institutes of Health (grant number MH074791).

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, Scripps Research has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-8134
Fax: 858-784-8136
press@scripps.edu

Eric Sauter | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>