Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists map out regulatory regions of genome, hot spots for diabetes genes

03.02.2010
The research, published online Jan. 31, 2010, in the journal Nature Genetics, presents the first high-resolution atlas of these regulatory elements in the most studied cell type for treatment and prevention of type II diabetes.

Together with colleagues in Barcelona, researchers at the University of North Carolina at Chapel Hill have generated a complete map of the areas of the genome that control which genes are “turned on” or “off.” The discovery, made in pancreatic islet cells, opens new avenues for understanding the genetic basis of type 2 diabetes and other common illnesses.

“Most of the human genome is uncharted territory – entire stretches of sequence with no clear function or purpose,” said Jason Lieb, Ph.D., associate professor of biology at UNC, a member of the UNC Lineberger Comprehensive Cancer Center and one of the senior authors of the study. “In fact, the majority of the DNA sequences associated with disease found thus far reside in the middle of nowhere. Here we have developed a map that can guide scientists to regions of the genome that do appear to be functionally relevant, instead of a dead end.”

The research, published online Jan. 31, 2010, in the journal Nature Genetics, presents the first high-resolution atlas of these regulatory elements in the most studied cell type for treatment and prevention of type II diabetes.

The completion of the human genome project has spurred a flurry of research into the exact genetic changes underlying disease. But while these studies have discovered thousands of sequences associated with human illness, pinpointing which sequence variations are the true culprits has proven difficult. That is because the underlying genetic sequence – the A, C, T, and G that code for your entire being – is only part of the story. It is not just the message, but the packaging – whether those four letters are laid out like an open book or tightly packaged like a message in a bottle – that determine which genes are active and which are not.

Using a new method developed in the Lieb laboratory called FAIRE-seq, Lieb and his colleagues isolated and sequenced a total of 80,000 open chromatin sites within pancreatic islet cells. They then compared these sites to those in non-islet cells to narrow the number down to 3,300 clusters of sites specific to this cell type. Each cluster typically encompassed single genes that are active specifically in islet cells. Twenty of these genes are known to harbor gene variants associated with type II diabetes.

The researchers decided to continue their studies on the variant most strongly associated with the disease, a single nucleotide polymorphism – or SNP – occurring in the TCF7L2 gene. They found that the chromatin is more open in the presence of the high risk version of the gene (a T) than in the presence of the non-risk version (an A). Further analysis demonstrated that the risk variant enhanced the activity of the gene, indicating that it may possess functional characteristics that could contribute to disease.

Lieb says his map is likely to help others within the diabetes research community identify new targets for understanding – and ultimately treating – the disease more effectively. But the approach is not limited to diabetes, or even pancreatic islet cells. He plans to use FAIRE-seq to chart the open chromatin regions present within other cells, such as the immune system’s lymphocytes.

The UNC research was funded in part by the National Institutes of Health. Study co-authors from UNC include Kyle J. Gaulton, Jeremy M. Simon, Paul G. Giresi, Marie P. Fogarty, Tami M. Panhuis, Piotr Mieczkowski, and Karen L. Mohlke. Collaborators from outside UNC include Takao Nammo, Lorenzo Pasquali, , Antonio Secchi, Domenico Bosco, Thierry Berney, Eduard Montanya, and Jorge Ferrer. Co-senior author Dr. Ferrer conducts his research in the Department of Endocrinology, Hospital Clínic de Barcelona.

Tom Hughes | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>