Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists map new mechanism in brain's barrier tissue

08.03.2012
Researchers at the University of Copenhagen have documented a previously unknown biological mechanism in the brain's most important line of defence: the blood-brain barrier. Scientists now know that the barrier helps maintain a delicate balance of glutamate, a vital signal compound in the brain. The research results have just been published in the scientific journal GLIA.

Glutamate is the most important activating transmitter substance in the brain. Vital in small amounts, it is toxic for the brain if the concentration becomes too high. Noise on the brain's signal lines can have fatal consequences and is involved in neurological diseases such as Alzheimer's disease, sclerosis and schizophrenia. Until now scientists believed that the glutamate balance was maintained by an interaction between different types of cells in the brain: Scientists map new mechanism in the brain

"We now know that the blood-brain barrier also plays a vital role in the process by 'vacuuming' – so to speak – the brain fluid for extraneous glutamate, which is then pumped into the blood where it does not have a damaging effect. This is new knowledge that can have enormous impact on future drug development. We have charted a biological mechanism that other scientists eventually can try to influence chemically, for example, in the form of medicine to limit cell death after a stroke. When the brain lacks oxygen, the glutamate level in the brain fluid increases dramatically, which kick starts a toxic chain reaction that kills cells", explains associate professor Birger Brodin.

The research results have just been published in the scientific journal GLIA.

A couple of years ago, researchers at the Faculty of Health and Medical Sciences modelled an artificial blood-brain barrier in the laboratory using brain cells from rats and calves. Ninety-five percent of all drugs tested for treating diseases originating in the central nervous system fail because they cannot pass through the blood-brain barrier, which is why it is so important to have a tool that can be used to negotiate the difficult path across the brain's effective border crossing.

However, the model is not just a potential screening tool. It can also inform scientists about the properties of the mysterious barrier and lead to new knowledge about the healthy brain and disease:

"Others have been on the trail of the hypothesis that the blood-brain barrier helps maintain the delicate glutamate balance in the brain. However, because of the model we created in the laboratory, we have been able to test the hypothesis successfully in a biological experiment for the first time ever", explains PhD student Hans Christian Helms, who is the main driver behind the development of the blood-brain barrier created in the laboratory.

Scientists discovered the new mechanism in the blood-brain barrier as they were trying to investigate how amino acids get into the brain:

"Many significant discoveries happen by accident to some extent. We start by having a theory that we want to investigate. We test the theory in the laboratory and sometimes we get unexpected results. It is often the unexpected results that lead us onto new paths and to scientific breakthrough", concludes Birger Brodin.

Contact:

PhD student
Hans Christian Helms
Faculty of Health and Medical Sciences
Cell: +45 31 24 26 66
Mail: hch@farma.ku.dk
Associate professor
Birger Brodin
Faculty of Health and Medical Sciences
Cell: +45 22 48 03 55
Mail: bbr@farma.ku.dk
Communications officer
Stine Rasmussen
Faculty of Health and Medical Sciences
Cell: +45 20 92 27 30
Mail: sr@farma.ku.dk

Hans Christian Helms | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>