Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Map All Possible Drug-like Chemical Compounds

Drug developers may have a new tool to search for more effective medications and new materials.

It's a computer algorithm that can model and catalogue the entire set of lightweight, carbon-containing molecules that chemists could feasibly create in a lab.

The small-molecule universe has more than 10^60 (that's 1 with 60 zeroes after it) chemical structures. Duke chemist David Beratan said that many of the world's problems have molecular solutions in this chemical space, whether it’s a cure for disease or a new material to capture sunlight.

But, he said, "The small-molecule universe is astronomical in size. When we search it for new molecular solutions, we are lost. We don't know which way to look."

To give synthetic chemists better directions in their molecular search, Beratan and his colleagues -- Duke chemist Weitao Yang, postdoctoral associates Aaron Virshup and Julia Contreras-Garcia, and University of Pittsburgh chemist Peter Wipf -- designed a new computer algorithm to map the small-molecule universe.

The map, developed with a National Institutes of Health P50 Center grant, tells scientists where the unexplored regions of the chemical space are and how to build structures to get there. A paper describing the algorithm and map appeared online in April in the Journal of the American Chemical Society.

The map helps chemists because they do not yet have the tools, time or money to synthesize all 10^60 compounds in the small-molecule universe. Synthetic chemists can only make a few hundred or a few thousand molecules at a time, so they have to carefully choose which compounds to build, Beratan said.

The scientists already have a digital library describing about a billion molecules found in the small-molecule universe, and they have synthesized about 100 million compounds over the course of human history, Beratan said. But these molecules are similar in structure and come from the same regions of the small-molecule universe.

It's the unexplored regions that could hold molecular solutions to some of the world's most vexing challenges, Beratan said.

To add diversity and explore new regions to the chemical space, Aaron Virshup developed a computer algorithm that built a virtual library of 9 million molecules with compounds representing every region of the small-molecule universe.

"The idea was to start with a simple molecule and make random changes, so you add a carbon, change a double bond to a single bond, add a nitrogen. By doing that over and over again, you can get to any molecule you can think of," Virshup said.

He programed the new algorithm to make small, random chemical changes to the structure of benzene and then to catalogue the new molecules it created based on where they fit into the map of the small-molecule universe. The challenge, Virshup said, came in identifying which new chemical compounds chemists could actually create in a lab.

Virshup sent his early drafts of the algorithm's newly constructed molecules to synthetic chemists who scribbled on them in red ink to show whether they were synthetically unstable or unrealistic. He then turned the criticisms into rules the algorithm had to follow so it would not make those types of compounds again.

"The rules kept us from getting lost in the chemical space," he said.

After ten iterations, the algorithm finally produced 9 million synthesizable molecules representing every region of the small-molecule universe, and it produced a map showing the regions of the chemical space where scientists have not yet synthesized any compounds.

"With the map, we can tell chemists, if you can synthesize a new molecule in this region of space, you have made a new type of compound," Virshup said. "It's an intellectual property issue. If you're in the blank spaces on our small molecule map, you're guaranteed to make something that isn't patented yet," he said.

The team has made the source code for the algorithm available online. The researchers said they hope scientists will use it to immediately start mining the unexplored regions of the small molecule universe for new chemical compounds.

The research was supported by a grant from the National Institutes of Health (P50-GM067082).

Citation: "Stochastic voyages into uncharted chemical space produce a representative library of all possible drug-like compounds." Virshup et. al. 2013. J. Am. Chem. Soc. [Epub ahead of print].

DOI: 10.1021/ja401184g

Ashley Yeager | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>