Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Make Important Step Toward Stopping Plaque-Like Formations in Huntington’s Disease

25.05.2010
Research published in the journal GENETICS identifies gene candidates likely to be responsible for plaque-like formations that lead to neurological decline

They might not be known for their big brains, but fruit flies are helping to make scientists and doctors smarter about what causes Huntington’s disease and how to treat it. New research, published in the journal GENETICS (http://www.genetics.org) describes a laboratory test that allows scientists to evaluate large numbers of fruit fly genes for a possible role in the formation of plaque-like protein aggregates within cells. Those genes often have counterparts in humans, which might then be manipulated to stop or slow the formation of plaque-like protein aggregates, the hallmark of Huntington’s and several other neurodegenerative diseases.

“Aggregate formations are closely linked to aging and brain diseases,” said Sheng Zhang, Ph.D, a researcher involved in the work from the Research Center for Neurodegenerative Diseases, the Brown Foundation Institute of Molecular Medicine, the University of Texas Health Science Center at Houston. “We hope our study will not only help to uncover how the formation of aggregates is regulated in a cell, but also help find good drug-development targets. Then, we can find ways to slow down plaque formations during aging and prevent and treat aggregates-related brain diseases, which are a pressing challenge to a modern society that is enjoying a longer life expectancy.”

To make this advance, scientists examined every known gene in the fruit fly genome and identified a small group of genes (more than 70 percent of which have human counterparts) that likely play important roles in regulating the formation of plaque-like protein aggregates within cells. They then expressed the Huntington’s disease protein in the fruit fly and found that it caused plaque-like protein aggregates in different fly tissues, including the brain and in cultured cells. The plaque-like protein aggregates were similar in appearance and biochemical properties to those found in tissues of people with Huntington’s disease. The scientists employed two methods to survey a large number of genes: automated microscopy for imaging the plaque-like protein aggregates in the cells at a high-magnification level, and a computer-assisted method to quantify information on the aggregates in each tested sample. By integrating these methods, researchers were able to quickly examine all the approximately 14,000 fruit fly genes and identify the ones that are important for regulating the formation of aggregates by the mutant Huntington protein.

“The genetic overlap between humans and fruit flies continues to be a treasure trove for scientific discoveries,” said Mark Johnston, Editor-in-Chief of GENETICS. “One hundred years ago, no one would have ever thought that research on a fly’s brain could lead to medicines for human brains, but this research is a perfect example of this possibility.”

Since 1916, GENETICS (http://www.genetics.org) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. GENETICS, the peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most cited journals in genetics and heredity.

Tracey DePellegrin Connelly | Newswise Science News
Further information:
http://www.cmu.edu
http://www.genetics.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>