Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Make Important Step Toward Stopping Plaque-Like Formations in Huntington’s Disease

25.05.2010
Research published in the journal GENETICS identifies gene candidates likely to be responsible for plaque-like formations that lead to neurological decline

They might not be known for their big brains, but fruit flies are helping to make scientists and doctors smarter about what causes Huntington’s disease and how to treat it. New research, published in the journal GENETICS (http://www.genetics.org) describes a laboratory test that allows scientists to evaluate large numbers of fruit fly genes for a possible role in the formation of plaque-like protein aggregates within cells. Those genes often have counterparts in humans, which might then be manipulated to stop or slow the formation of plaque-like protein aggregates, the hallmark of Huntington’s and several other neurodegenerative diseases.

“Aggregate formations are closely linked to aging and brain diseases,” said Sheng Zhang, Ph.D, a researcher involved in the work from the Research Center for Neurodegenerative Diseases, the Brown Foundation Institute of Molecular Medicine, the University of Texas Health Science Center at Houston. “We hope our study will not only help to uncover how the formation of aggregates is regulated in a cell, but also help find good drug-development targets. Then, we can find ways to slow down plaque formations during aging and prevent and treat aggregates-related brain diseases, which are a pressing challenge to a modern society that is enjoying a longer life expectancy.”

To make this advance, scientists examined every known gene in the fruit fly genome and identified a small group of genes (more than 70 percent of which have human counterparts) that likely play important roles in regulating the formation of plaque-like protein aggregates within cells. They then expressed the Huntington’s disease protein in the fruit fly and found that it caused plaque-like protein aggregates in different fly tissues, including the brain and in cultured cells. The plaque-like protein aggregates were similar in appearance and biochemical properties to those found in tissues of people with Huntington’s disease. The scientists employed two methods to survey a large number of genes: automated microscopy for imaging the plaque-like protein aggregates in the cells at a high-magnification level, and a computer-assisted method to quantify information on the aggregates in each tested sample. By integrating these methods, researchers were able to quickly examine all the approximately 14,000 fruit fly genes and identify the ones that are important for regulating the formation of aggregates by the mutant Huntington protein.

“The genetic overlap between humans and fruit flies continues to be a treasure trove for scientific discoveries,” said Mark Johnston, Editor-in-Chief of GENETICS. “One hundred years ago, no one would have ever thought that research on a fly’s brain could lead to medicines for human brains, but this research is a perfect example of this possibility.”

Since 1916, GENETICS (http://www.genetics.org) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. GENETICS, the peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most cited journals in genetics and heredity.

Tracey DePellegrin Connelly | Newswise Science News
Further information:
http://www.cmu.edu
http://www.genetics.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>