Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at the Mainz University Medical Center gain new insights into Taspase1 function

10.07.2012
Exploiting "molecular glues" to target disease relevant proteolytic enzymes

Scientists at the University Medical Center of Johannes Gutenberg University Mainz in Germany identified a novel strategy to target the oncologically relevant protein-cleaving enzyme Taspase1. Taspase1 levels are not only elevated in cancer cells of patients with head and neck tumors and other solid malignancies but the enzyme is also critical for the development of leukemias.

Central to this concept is the approach to inhibit the enzyme’s activity by 'gluing together' individual Taspase1 molecules. The results of a study undertaken by Professor Dr. Roland Stauber of the ENT Department at the Mainz University Medical Center were recently published in The FASEB Journal.

Protein-cleaving enzymes, so-called proteases, are not only significantly involved in physiological processes in the healthy body, such as blood clotting, but also play critical roles in illnesses, such as cancer, Alzheimer's, and infectious diseases. Several protease inhibitors have already been developed and are being used against some of these 'disease-causing' enzymes with varying success in the clinics. However, one representative of this protein family in particular – the protease Taspase1 – is troubling researchers worldwide." We currently do not have any drug that can inhibit Taspase1. And we still do not understand in sufficient detail how this enzyme really works," says Stauber.

Almost ten years ago, the team found enhanced levels of Taspase1 in the cancer cells of patients with head and neck tumors. At that time, the function of the protease in tumor cells and its relevance for disease was still unknown. Recent findings support the oncological importance of Taspase1 for solid malignancies and leukemias. Taspase1 appears to override control mechanisms in healthy cells by cleaving various other proteins, thereby significantly promoting cancer development. As a result of extensive research supported by funding provided by the Head and Neck Tumor Research Foundation [Stiftung Tumorforschung], the German Cancer Aid, the Thyssen Foundation, and Johannes Gutenberg University Mainz, the researchers have now gained new insights into the enzyme’s molecular functions. "Previously, it was assumed that two Taspase1 enzymes had to come together in order to be active and cleave other cellular proteins," explains Stauber. "Our latest results not only demonstrate that one Taspase1 molecule is sufficient for this, but also that we can even block the tumor-promoting properties of the enzyme by 'gluing' two Taspase1 molecules together."

Hence, the Mainz-based researchers identified a completely novel approach to developing drugs that may be used to inhibit Taspase1. "We are now searching for chemical substances that could function as molecular Taspase1 'adhesives'," adds Stauber. As part of the so-called Chemical BioMedicine Initiative, the scientists are betting on nature's vast chemical repertoire. "Natural products from fungi and marine sponges are a highly privileged source for potential new drugs. Evolution already pre-checked the biological qualities of such chemical substances in living organisms. Thus, we have a good chance of finding the right chemical decoys," predicts Stauber. "The robotic platform at the Mainz Screening Center combined with our Taspase1 assays will play a leading role in this search for the 'needle in the haystack'."

VERÖFFENTLICHUNG
C. Bier et. al., Allosteric inhibition of Taspase1's pathobiological activity by enforced dimerization in vivo, The FASEB Journal, 26:8, 23 May 2012,

doi:10.1096/fj.11-202432

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/15505.php

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>