Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at Mainz University identify inhibitor of myelin formation in the central nervous system

20.11.2012
Possible implication for various neurological illnesses / Publication in EMBO reports

Scientists at the Mainz University Medical Center have discovered another molecule that plays an important role in regulating myelin formation in the central nervous system.

Myelin promotes the conduction of nerve cell impulses by forming a sheath around their projections, the so-called axons, at specific locations – acting like the plastic insulation around a power cord. The research team, led by Dr. Robin White of the Institute of Physiology and Pathophysiology at the University Medical Center of Johannes Gutenberg University Mainz, recently published their findings in the prestigious journal EMBO reports.

Complex organisms have evolved a technique known as saltatory conduction of impulses to enable nerve cells to transmit information over large distances more efficiently. This is possible because the specialized nerve cell axonal projections involved in conducting impulses are coated at specific intervals with myelin, which acts as an insulating layer.

In the central nervous system, myelin develops when oligodendrocytes, which are a type of brain cell, repeatedly wrap their cellular processes around the axons of nerve cells forming a compact stack of cell membranes, a so-called myelin sheath. A myelin sheath not only has a high lipid content but also contains two main proteins, the synthesis of which needs to be carefully regulated.

The current study analyzed the synthesis of myelin basic protein (MBP), a substance which is essential for the formation and stabilization of myelin membranes. In common with all proteins, MBP is generated in a two-stage process originating from basic genetic material in the form of DNA. First, DNA is converted to mRNA, which, in turn, serves as a template for the actual synthesis of MBP.

During myelin formation, the synthesis of MBP in oligodendrocytes is suppressed until distinct signals from nerve cells initiate myelination at specific "production sites". To date, the mechanisms involved in the suppression of MBP synthesis over relatively long periods of time have not been understood. This is where the current work of the Mainz scientists comes in, as they were able to identify a molecule that is responsible for the suppression of MBP synthesis.

"This molecule, called sncRNA715, binds to MBP mRNA, thus preventing MBP synthesis," explains Dr. Robin White. "Our research findings show that levels of sncRNA715 and MBP inversely correlate during myelin formation and that it is possible to influence the extent of MBP production in oligodendrocytes by artificially modifying levels of sncRNA715. This indicates that the recently discovered molecule is a significant factor in the regulation of MBP synthesis."

Understanding the molecular basis for myelin formation is essential with regard to various neurological illnesses that involve a loss of the protective myelin layer. For example, it is still unclear why oligodendrocytes lose their ability to repair the damage to myelin in the progress of multiple sclerosis (MS). "Interestingly, in collaboration with our Dutch colleagues, we have been able to identify a correlation between levels of sncRNA715 and MBP in the brain tissue of MS patients," Robin White continues.

"In contrast with unaffected areas of the brain in which the myelin structure appears normal, there are higher levels of sncRNA715 in affected areas in which myelin formation is impaired. Our findings may help to provide a molecular explanation for myelination failures in illnesses such as multiple sclerosis."

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/53961.php

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>