Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at Mainz University identify inhibitor of myelin formation in the central nervous system

20.11.2012
Possible implication for various neurological illnesses / Publication in EMBO reports

Scientists at the Mainz University Medical Center have discovered another molecule that plays an important role in regulating myelin formation in the central nervous system.

Myelin promotes the conduction of nerve cell impulses by forming a sheath around their projections, the so-called axons, at specific locations – acting like the plastic insulation around a power cord. The research team, led by Dr. Robin White of the Institute of Physiology and Pathophysiology at the University Medical Center of Johannes Gutenberg University Mainz, recently published their findings in the prestigious journal EMBO reports.

Complex organisms have evolved a technique known as saltatory conduction of impulses to enable nerve cells to transmit information over large distances more efficiently. This is possible because the specialized nerve cell axonal projections involved in conducting impulses are coated at specific intervals with myelin, which acts as an insulating layer.

In the central nervous system, myelin develops when oligodendrocytes, which are a type of brain cell, repeatedly wrap their cellular processes around the axons of nerve cells forming a compact stack of cell membranes, a so-called myelin sheath. A myelin sheath not only has a high lipid content but also contains two main proteins, the synthesis of which needs to be carefully regulated.

The current study analyzed the synthesis of myelin basic protein (MBP), a substance which is essential for the formation and stabilization of myelin membranes. In common with all proteins, MBP is generated in a two-stage process originating from basic genetic material in the form of DNA. First, DNA is converted to mRNA, which, in turn, serves as a template for the actual synthesis of MBP.

During myelin formation, the synthesis of MBP in oligodendrocytes is suppressed until distinct signals from nerve cells initiate myelination at specific "production sites". To date, the mechanisms involved in the suppression of MBP synthesis over relatively long periods of time have not been understood. This is where the current work of the Mainz scientists comes in, as they were able to identify a molecule that is responsible for the suppression of MBP synthesis.

"This molecule, called sncRNA715, binds to MBP mRNA, thus preventing MBP synthesis," explains Dr. Robin White. "Our research findings show that levels of sncRNA715 and MBP inversely correlate during myelin formation and that it is possible to influence the extent of MBP production in oligodendrocytes by artificially modifying levels of sncRNA715. This indicates that the recently discovered molecule is a significant factor in the regulation of MBP synthesis."

Understanding the molecular basis for myelin formation is essential with regard to various neurological illnesses that involve a loss of the protective myelin layer. For example, it is still unclear why oligodendrocytes lose their ability to repair the damage to myelin in the progress of multiple sclerosis (MS). "Interestingly, in collaboration with our Dutch colleagues, we have been able to identify a correlation between levels of sncRNA715 and MBP in the brain tissue of MS patients," Robin White continues.

"In contrast with unaffected areas of the brain in which the myelin structure appears normal, there are higher levels of sncRNA715 in affected areas in which myelin formation is impaired. Our findings may help to provide a molecular explanation for myelination failures in illnesses such as multiple sclerosis."

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/53961.php

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>