Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at Mainz University decode mechanisms of cell orientation in the brain

31.07.2013
Transmembrane protein NG2 controls orientation of cell migration toward the wound / Publication in the prestigious Journal of Neuroscience

When the central nervous system is injured, oligodendrocyte precursor cells (OPC) migrate to the lesion and synthesize new myelin sheaths on demyelinated axons. Scientists at the Institute of Molecular Cell Biology at Johannes Gutenberg University Mainz (JGU) have now discovered that a distinct protein regulates the direction and movement of OPC toward the wound.

The transmembrane protein NG2, which is expressed at the surface of OPCs and down-regulated as they mature to myelinating oligodendrocytes, plays an important role in the reaction of OPC to wounding. The results of this study have recently been published in the renowned Journal of Neuroscience.

The myelin sheath functions to electrically isolate axons of many nerve fibers and is synthesized by oligodendrocytes which mature from the OPC. In the case of injury, neural cells send out signaling molecules which attract the OPC. The NG2 protein helps OPCs to react to some of these and move in a directed and orientated fashion.

“We were able to prove in cell biological experiments that NG2 orientates OPC toward the lesion and ensures targeted OPC migration toward the wound through the regulation of cell polarity”, explained Dr. Fabien Binamé, lead author of the study. Supported by funding of the German Research Foundation (DFG), Dr. Fabien Binamé is currently carrying out his research at the Institute of Molecular Cell Biology headed by Professor Jacqueline Trotter.

“The function and mode of operation of NG2 is not yet fully understood”, added co-author Dominik Sakry, who was also involved in the study. “But it looks as if the NG2-associated regulatory mechanism becomes apparent only in cases of injury of the nervous system.”

Diseases such as Multiple Sclerosis or brain tumors go hand in hand with damage of nerve tissue. “The results of our study on NG2-mediated basic mechanisms of cell orientation and migration could aid in understanding the repair of damaged demyelinated tissue, or be important for treatment of highly active migratory brain tumors which often express high levels of NG2”, said Professor Jacqueline Trotter, head of the JGU Institute of Molecular Cell Biology.

Publication:
Fabien Binamé, Dominik Sakry, Leda Dimou, Valérie Jolivel, Jacqueline Trotter
NG2 Regulates Directional Migration of Oligodendrocyte Precursor Cells via Rho GTPases and Polarity Complex Proteins
Journal of Neuroscience, 26 June 2013
doi:10.1523/JNEUROSCI.5010-12.2013
Illustration:
http://www.uni-mainz.de/bilder_presse/10_zellbiologie_nervengewebe_NG2.jpg
The upper two pictures show NG2-expressing OPC in healthy nerve tissue. In comparison, the lower pictures show the altered morphology and orientation of cells in damaged nerve tissue.

ill.: Institute of Molecular Cell Biology, JGU

Further information:
Dr. Fabien Binamé / Professor Dr. Jacqueline Trotter
Institute of Molecular Cell Biology
Faculty 10: Biology
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-24169 / 39-20263
fax +49 6131 39-23840
e-mail: biname@uni-mainz.de / trotter@uni-mainz.de
Weitere Informationen:
http://www.uni-mainz.de/presse/16582_ENG_HTML.php
- press release ;
http://www.jneurosci.org/content/33/26/10858.full
- publication in the Journal of Neuroscience

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/FB/Biologie/Molekulare-Zellbiologie

More articles from Life Sciences:

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>