Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at Mainz University decode mechanisms of cell orientation in the brain

31.07.2013
Transmembrane protein NG2 controls orientation of cell migration toward the wound / Publication in the prestigious Journal of Neuroscience

When the central nervous system is injured, oligodendrocyte precursor cells (OPC) migrate to the lesion and synthesize new myelin sheaths on demyelinated axons. Scientists at the Institute of Molecular Cell Biology at Johannes Gutenberg University Mainz (JGU) have now discovered that a distinct protein regulates the direction and movement of OPC toward the wound.

The transmembrane protein NG2, which is expressed at the surface of OPCs and down-regulated as they mature to myelinating oligodendrocytes, plays an important role in the reaction of OPC to wounding. The results of this study have recently been published in the renowned Journal of Neuroscience.

The myelin sheath functions to electrically isolate axons of many nerve fibers and is synthesized by oligodendrocytes which mature from the OPC. In the case of injury, neural cells send out signaling molecules which attract the OPC. The NG2 protein helps OPCs to react to some of these and move in a directed and orientated fashion.

“We were able to prove in cell biological experiments that NG2 orientates OPC toward the lesion and ensures targeted OPC migration toward the wound through the regulation of cell polarity”, explained Dr. Fabien Binamé, lead author of the study. Supported by funding of the German Research Foundation (DFG), Dr. Fabien Binamé is currently carrying out his research at the Institute of Molecular Cell Biology headed by Professor Jacqueline Trotter.

“The function and mode of operation of NG2 is not yet fully understood”, added co-author Dominik Sakry, who was also involved in the study. “But it looks as if the NG2-associated regulatory mechanism becomes apparent only in cases of injury of the nervous system.”

Diseases such as Multiple Sclerosis or brain tumors go hand in hand with damage of nerve tissue. “The results of our study on NG2-mediated basic mechanisms of cell orientation and migration could aid in understanding the repair of damaged demyelinated tissue, or be important for treatment of highly active migratory brain tumors which often express high levels of NG2”, said Professor Jacqueline Trotter, head of the JGU Institute of Molecular Cell Biology.

Publication:
Fabien Binamé, Dominik Sakry, Leda Dimou, Valérie Jolivel, Jacqueline Trotter
NG2 Regulates Directional Migration of Oligodendrocyte Precursor Cells via Rho GTPases and Polarity Complex Proteins
Journal of Neuroscience, 26 June 2013
doi:10.1523/JNEUROSCI.5010-12.2013
Illustration:
http://www.uni-mainz.de/bilder_presse/10_zellbiologie_nervengewebe_NG2.jpg
The upper two pictures show NG2-expressing OPC in healthy nerve tissue. In comparison, the lower pictures show the altered morphology and orientation of cells in damaged nerve tissue.

ill.: Institute of Molecular Cell Biology, JGU

Further information:
Dr. Fabien Binamé / Professor Dr. Jacqueline Trotter
Institute of Molecular Cell Biology
Faculty 10: Biology
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-24169 / 39-20263
fax +49 6131 39-23840
e-mail: biname@uni-mainz.de / trotter@uni-mainz.de
Weitere Informationen:
http://www.uni-mainz.de/presse/16582_ENG_HTML.php
- press release ;
http://www.jneurosci.org/content/33/26/10858.full
- publication in the Journal of Neuroscience

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/FB/Biologie/Molekulare-Zellbiologie

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>