Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use light to map neurons' effects on one another

21.12.2009
All-optical technique determines when neurons inhibit or excite one another

Scientists at Harvard University have used light and genetic trickery to trace out neurons' ability to excite or inhibit one another, literally shedding new light on the question of how neurons interact with one another in live animals.

The work is described in the current issue of the journal Nature Methods. It builds upon scientists' understanding of the neural circuitry of the nematode worm Caenorhabditis elegans, frequently used as a model in biological research. While the detailed physical structure of C. elegans' scant 302 neurons is well documented, the new research helps measure how neurons in this organism affect each others' activity, and could ultimately help researchers map out in detail how neural impulses flow throughout the organism.

"This approach gives us a powerful new tool for analyzing small neural circuits, and directly measuring how neurons talk to each other," says Sharad Ramanathan, an assistant professor of molecular and cellular biology and of applied physics at Harvard. "While we've only mapped out the interplay of four neurons, it's the first time scientists have determined the ability of multiple neurons in a circuit to excite or inhibit their neighbors."

Zengcai Guo and Ramanathan combined genetically encoded calcium sensors and light-activated ion channels with optics. The scientists used a mirror array to excite individual neurons -- each just two to three millionths of a meter wide -- while simultaneously measuring calcium activity in multiple other neurons. This calcium activity serves to indicate whether these other neurons were activated or inhibited by the neuron that was primed with a burst of light.

"Using this technique, for the first time, we could excite both a sensory neuron and an interneuron and monitor how activity propagates," says Guo, a research assistant in Harvard's Center for Systems Biology, Department of Molecular Biology, and School of Engineering and Applied Sciences. "We expect that our technique can eventually be used more broadly to measure how activity propagates through neural circuits."

Manipulating neurons with light, Guo and Ramanathan were able to evoke an avoidance response -- causing the worm to back away from light -- that is normally prompted only when the organism is touched.

With a compact nervous system consisting of only 302 neurons linked by some 7,000 synapses, the nematode C. elegans is an ideal system for studying the interplay between neural circuits and behavior. While the physical connectivity of the neurons in this nematode is well known, scientists know very little about which of these connections are excitatory and which are inhibitory.

Because of the small sizes of the neurons and a tough cuticle surrounding the worm, electrophysiological recordings can be made from only one neuron at a time, precluding the possibility of any circuit-level analysis of neural activity. By establishing this first fully genetically encoded light-based electrophysiology, the authors have developed a way to overcome this limitation.

Guo and Ramanathan's Nature Methods paper was co-authored by Anne C. Hart of Massachusetts General Hospital and Harvard Medical School. Their work was funded by the National Institute of General Medical Sciences.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>