Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists learn why the flu may turn deadly

06.05.2009
New research published in the Journal of Leukocyte Biology suggests that the influenza virus 'paralyzes' the immune system

As the swine flu continues its global spread, researchers from the Children's Hospital of Philadelphia, Pennsylvania, have discovered important clues about why influenza is more severe in some people than it is in others.

In their research study published online in the Journal of Leukocyte Biology, the scientists show that the influenza virus can actually paralyze the immune systems of otherwise healthy individuals, leading to severe secondary bacterial infections, such as pneumonia. Furthermore, this immunological paralysis can be long-lived, which is important to know when developing treatment strategies to combat the virus.

According to Kathleen Sullivan, M.D., Ph.D., the senior researcher involved in the study and Chief of the Division of Allergy and Immunology at the Children's Hospital of Philadelphia, "We have a very limited understanding of why some people who get influenza simply have a bad cold and other people become very sick and even die. The results of this study give us a much better sense of the mechanisms underlying bacterial infections arising on top of the viral infection."

Sullivan and colleagues recruited pediatric patients with severe influenza and examined the level of cytokines, which serve as the first line initiators of immune response, in the blood plasma. Although they found elevated levels of cytokines, they also found a decreased response of toll-like receptors, which activate immune cell responses as a result of invading microbes. This suggests that the diminished response of these receptors may be responsible for the paralysis of the immune system, leading to secondary bacterial infections.

The influenza patients were compared with patients with moderate influenza, respiratory syncytial virus, and a control group of healthy individuals. The immune paralysis appeared to be specifically a result of influenza infection and was not seen in patients with respiratory syncytial virus. This process might explain why one quarter of children who die from influenza, die from a bacterial infection occurring on top of the virus.

"Despite major medical advances since the devastating flu outbreak of 1918 and 1919, influenza virus infection remains a very serious threat," said John Wherry, Ph.D., Deputy Editor of the Journal of Leukocyte Biology, "and the current swine flu outbreak is a grim reminder of this fact. The work by Dr. Sullivan and colleagues brings us a step closer to understanding exactly what goes wrong in some people who get the flu, so, ultimately, physicians can develop more effective treatment strategies."

The Journal of Leukocyte Biology (http://www.jleukbio.org) publishes peer-reviewed manuscripts on original investigations focusing on the cellular and molecular biology of leukocytes and on the origins, the developmental biology, biochemistry and functions of granulocytes, lymphocytes, mononuclear phagocytes and other cells involved in host defense and inflammation. The Journal of Leukocyte Biology is published by the Society for Leukocyte Biology.

Details: Meredith L. Heltzer, Susan E. Coffin, Kelly Maurer, Asen Bagashev, Zhe Zhang, Jordan S. Orange, and Kathleen E. Sullivan. Immune dysregulation in severe influenza. doi:10.1189/jlb.1108710. http://www.jleukbio.org/papbyrecent.shtml

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org
http://www.jleukbio.org

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>