Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists invent advanced approach to identify new drug candidates from genome sequence

As proof-of-principle, the team designs potent anti-cancer compound

In research that could ultimately lead to many new medicines, scientists from the Florida campus of The Scripps Research Institute (TSRI) have developed a potentially general approach to design drugs from genome sequence. As a proof of principle, they identified a highly potent compound that causes cancer cells to attack themselves and die.

The new method identified a highly potent compound that causes cancer cells to attack themselves and die.

Credit: Image courtesy of the Disney lab, The Scripps Research Institute.

"This is the first time therapeutic small molecules have been rationally designed from only an RNA sequence—something many doubted could be done," said Matthew Disney, PhD, an associate professor at TSRI who led the study. "In this case, we have shown that that approach allows for specific and unprecedented targeting of an RNA that causes cancer."

The technique, described in the journal Nature Chemical Biology online ahead of print on February 9, 2014, was dubbed Inforna.

"With our program, we can identify compounds with high specificity," said Sai Pradeep Velagapudi, the first author of the study and a graduate student working in the Disney lab. "In the future, we hope we can design drug candidates for other cancers or for any pathological RNA."

In Search of New Approaches

In their research program, Disney and his team has been developing approaches to understand the binding of drugs to RNA folds. In particular, the lab is interested in manipulating microRNAs.

Discovered only in the 1990s, microRNAs are short molecules that work within virtually all animal and plant cells. Typically each one functions as a "dimmer switch" for one or more genes; it binds to the transcripts of those genes and effectively keeps them from being translated into proteins. In this way microRNAs can regulate a wide variety of cellular processes.

Some microRNAs have been associated with diseases. MiR-96 microRNA, for example, is thought to promote cancer by discouraging a process called apoptosis or programmed cell death that can rid the body of cells that begin to grow out of control.

As part of its long-term program, the Disney lab developed computational approaches that can mine information against such genome sequences and all cellular RNAs with the goal of identifying drugs that target such disease-associated RNAs while leaving others unaffected.

"In recent years we've seen an explosion of information about the many roles of RNA in biology and medicine," said Peter Preusch, PhD, of the National Institute of Health's National Institute of General Medical Sciences, which partially funded the research. "This new work is another example of how Dr. Disney is pioneering the use of small molecules to manipulate disease-causing RNAs, which have been underexplored as potential drug targets."

'Unprecedented' Findings

In the new study, Disney and colleagues describe their computational technique, which identifies optimal drug targets by mining a database of drug-RNA sequence ("motif") interactions against thousands of cellular RNA sequences.

Using Inforna, the team identified compounds that can target microRNA-96, as well as additional compounds that target nearly two dozen other disease-associated microRNAs.

The researchers showed that the drug candidate that inhibited microRNA-96 inhibited cancer cell growth. Importantly, they also showed that cells without functioning microRNA-96 were unaffected by the drug.

"This illustrates an unparalleled selectivity for the compound," Disney noted. "In contrast, typical cancer therapeutics target cells indiscriminately, often leading to side effects that can make these drugs difficult for patients to tolerate."

Disney added that the new drug candidate, which is easy to produce and cell permeable, targets microRNA-96 far more specifically than the state-of-the-art method to target RNA (using oligonucleotides) currently in use. "That's unprecedented and provides great excitement for future developments."

In addition to Disney and Velagapudi, Steven M. Gallo of the University of Buffalo was an author of the study, "Sequence-Based Design of Bioactive Small Molecules That Target Precursor MicroRNAs."

The work was supported by the National Institutes of Health (grant R01GM097455) and the Camille and Henry Dreyfus Foundation.

Eric Sauter | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht New study reveals what's behind a tarantula's blue hue
01.12.2015 | University of California - San Diego

nachricht Tracing a path toward neuronal cell death
01.12.2015 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do Landslides control the weathering of rocks?

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent...

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

All Focus news of the innovation-report >>>



Event News

European Geosciences Union meeting: Media registration now open (EGU 2016 media advisory 1)

01.12.2015 | Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Latest News

USGS projects large loss of Alaska permafrost by 2100

01.12.2015 | Earth Sciences

New study reveals what's behind a tarantula's blue hue

01.12.2015 | Life Sciences

Climate Can Grind Mountains Faster Than They Can Be Rebuilt

01.12.2015 | Earth Sciences

More VideoLinks >>>