Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at the Institute of Molecular Biology identify key event for sex determination

27.11.2012
Deletion of just one gene results in complete sex reversal of male mice

Scientists at the Institute of Molecular Biology (IMB) in Mainz have identified a protein essential for initiating the development of male sex organs. Loss of the gene Gadd45g results in complete sex reversal of male mice, making them appear female.

The researchers’ finding uncovers a novel signaling cascade, which acts early in development to determine the gonads in males. This discovery sheds light on the genetic network that controls how embryos develop as males or females. The research has just been published in the high-impact journal Developmental Cell.

Research carried out in the laboratory of IMB Director Professor Christof Niehrs uncovered that the deletion of just one gene, Gadd45g, results in male mice with external genitalia that are indistinguishable from those of female mice. Furthermore, the internal reproductive organs of the mutant male mice look like those of females, indicating that a complete sex reversal has occurred. Says Christof Niehrs, "when breeding Gadd45g mutant mice we were puzzled why we got only females, until we discovered that some of these females actually carry a Y-chromosome."

The researchers further showed that Gadd45g exerts its effect by regulating signaling cascades that control the gene Sry, which had previously shown to be a master regulator of male sex development. This study both identifies a new role for Gadd45g and suggests a novel signaling pathway that could have important implications for research into disorders of sexual development.

For male sex organs to develop correctly, it is essential that the gene Sry is expressed at high levels within a very narrow timeframe in the embryo. The group of Christof Niehrs has now shown that Gadd45g is expressed in a pattern highly similar to that of Sry. The Gadd45g gene is, however, active just before Sry is turned on. Importantly, in mice lacking Gadd45g, the Sry gene is not expressed correctly. This indicates that Gadd45g controls the expression of this master regulator and, in turn, male development.

The scientists also provide a possible mechanism by which Gadd45g regulates Sry. Their model suggests that Gadd45g binds to and activates key signaling proteins, such as p38, which activate the transcription factor Gata4. When active, this factor binds to and activates the Sry gene. Similar results are co-published in the same issue of Developmental Cell by the group of Andy Greenfield in the UK. "As outsiders to the field of sex determination we were surprised by how little was known about the regulation of Sry on the molecular level. Our work is a leap forward in the understanding of this fundamental process”, says Niehrs.

INSTITUTE OF MOLECULAR BIOLOGY gGmbH (IMB)
The Institute of Molecular Biology gGmbH (IMB) is a new research center in the life sciences, which was established in March 2011. Research at IMB concentrates on three cutting-edge research areas: Developmental Biology, Epigenetics, and DNA Damage Response. The research center is a prime example of successful collaboration between public authorities and a private foundation: The Boehringer Ingelheim Foundation has dedicated EUR 100 million for a period of ten years to cover the scientific running of IMB, while the state of Rhineland-Palatinate provided EUR 50 million for the construction of a modern building to house IMB. For more information about IMB please visit: www.imb-mainz.de.
BOEHRINGER INGELHEIM FOUNDATION
The Boehringer Ingelheim Foundation is an independent, non-profit organization committed to the promotion of the medical, biological, chemical and pharmaceutical sciences. It was established in 1977 by Hubertus Liebrecht, a member of the shareholder family of the company Boehringer Ingelheim. In addition to various awards for up-and-coming scientists at the University of Mainz, the foundation has endowed EUR 100 million over a period of ten years to finance the scientific running of the Institute of Molecular Biology (IMB) at Johannes Gutenberg University Mainz. For more information about the foundation and its programs please visit: www.boehringer-ingelheim-stiftung.de.

Press contact for further information
Dr. Ralf Dahm
Institute of Molecular Biology gGmbH (IMB)
Ackermannweg 4, D 55128 Mainz, GERMANY
phone: +49 (0)6131 39-21455, fax: +49 (0)6131 39-21521, e-mail: press@imb-mainz.de

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15869_ENG_HTML.php
http://www.imb-mainz.de/
http://www.imb-mainz.de/research-at-imb/niehrs/

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>