Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists in Cologne identify important lysine-acetylation regulatory mechanisms for Ran protein

12.08.2015

The team of scientists led by Dr. Michael Lammers at CECAD, the Cluster of Excellence at the University of Cologne, has discovered that the essential cellular protein Ran is fundamentally regulated by lysine acetylation. Ran belongs to the family of Ras proteins, which regulate fundamental cellular processes such as cell differentiation, cell division, and intracellular transport. Mutations in Ras-related proteins are involved in the development of various types of cancer including colorectal cancer, lung cancer, and lymphomas. Mechanisms that can switch off the functions of Ran protein are therefore of particular therapeutic interest.

Discoveries made by scientists in Cologne lead to new perspectives in the treatment of colorectal cancer, lung cancer, and lymphomas. Dr. Michael Lammers and his research team at CECAD have identified new regulatory mechanisms for Ran protein.

They have shown that all essential functions of the small GTP-binding Ran protein can be regulated by lysine acetylation. Ran is involved in many important cell processes including cell division and protein transport. Dysregulation of these processes has dramatic effects on normal cell development.

Many types of tumor cells have increased concentrations of Ran or Ran-interacting proteins or Ran-regulators. Switching off Ran-function in a targeted manner, using the newly identified regulatory system, may provide novel therapeutic approaches.

The small Ran protein is a molecular switch that can be turned on or off depending on the nucleotide charge. If this switch protein is not regulated properly, there may be far-reaching effects on essential cell functions.

Using high-resolution quantitative mass spectrometry, it has recently been shown that many of many of the amino acids – the lysines – in the Ran protein can be modified by adding an acetyl group. Modifications of this type made to the folded protein, once biosynthesis is complete, essentially alter and regulate protein function. Some of the acetylation sites are to be found in highly relevant functional regions within the Ran protein.

Dr. Lammers: “With a combined synthetic biological, biochemical, and cell biological approach, we have shown that lysine acetylation regulates nearly all essential Ran functions – something that was completely unknown beforehand. For some of the sites, we have also been successful in identifying specific enzymes responsible to modify the protein in this way, adding and removing such modifications. These findings may allow us to develop novel agents for cancer therapy.”

Cancer is the second most common cause of death in industrialized nations and responsible for about 25% of all deaths. The risk of malignancy increases with age – which means that research into the development and treatment of cancer is of great economic and personal interest in an aging society. CECAD, the Cluster of Excellence at the University of Cologne, is carrying out research into aging and its associated diseases. CECAD’s vision is to develop new treatments for the entire spectrum of age-related diseases. Given this aim, the latest findings from Dr. Lammers and his team are of great import.

Published in: Proc. Natl. Acad. Sci. U. S. A.; on June 29th 2015 (Epub)

de Boor, S.*, Knyphausen, P.*, Kuhlmann, N., Wroblowski, S., Brenig, J., Nolte, H., Krüger, M., and Lammers, M. (2015). Small GTP-binding protein Ran is regulated by posttranslational lysine-acetylation. Proc. Natl. Acad. Sci. U. S. A.] 12(28):E3679-88. doi: 10.1073/pnas.1505995112. Epub 2015 Jun 29.
*(contributed equally to the work)

Contact:
Dr. Michael Lammers
mlammers@uni-koeln.de
Tel. +49(0) 221-478-84308/84314

Astrid Bergmeister MBA
Head of PR & Marketing, CECAD
University of Cologne
Phone: +49 (0)221 478 84043
Email: astrid.bergmeister@uk-koeln.de

Weitere Informationen:

http://cecad.uni-koeln.de

Astrid Bergmeister | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>