Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify rare stem cells in testis that hold potential for infertility treatments

05.09.2014

Rare stem cells in testis that produce a biomarker protein called PAX7 help give rise to new sperm cells — and may hold a key to restoring fertility, research by scientists at UT Southwestern Medical Center suggests.

Researchers studying infertility in mouse models found that, unlike similar types of cells that develop into sperm, the stem cells that express PAX7 can survive treatment with toxic drugs and radiation. If the findings hold true in people, they eventually could lead to new strategies to restore or protect fertility in men undergoing cancer treatment.


First author Gina Aloisio, a student in UT Southwestern’s Medical Scientist Training Program, and Dr. Diego H. Castrillon, Associate Professor of Pathology and Director of Investigative Pathology.

“Unfortunately, many cancer treatments negatively impact fertility, and men who receive such treatments are at high risk of losing their fertility. This is of great concern among cancer patients,” said Dr. Diego H. Castrillon, Associate Professor of Pathology and Director of Investigative Pathology. “The PAX7 stem cells we identified proved highly resistant to cancer treatments, suggesting that they may be the cells responsible for the recovery of fertility following such treatments.”

Infertility, which the Centers for Disease Control estimates affects as many as 4.7 million men in the United States, is a key complication of cancer treatments, such as chemotherapy and radiation therapy.

The new findings, presented in the Journal of Clinical Investigation, provide valuable insight into the process of sperm development. Known as spermatogenesis, sperm development is driven by a population of “immature” stem cells called progenitors in the testes. These cells gradually “mature” into fully differentiated sperm cells. Dr. Castrillon and his team tracked progenitor cells that express the protein PAX7 in mouse testes, and found that these cells gradually give rise to mature sperm.

“We have long known that male fertility is driven by rare stem cells within the testes, but the precise identity of these stem cells has been disputed,” said Dr. Castrillon, who holds the John H. Childers, M.D. Professorship in Pathology. “Our findings suggest that these rare PAX7 cells are the key cells within the testes that are ultimately responsible for male fertility.”

Importantly, even after exposure to toxic chemotherapy or radiation treatments, the PAX7-expressing cells continued to divide and thus could contribute to restoring sperm development.

First author Gina Aloisio, a student in UT Southwestern’s Medical Scientist Training Program, is the recipient of a Fellowship Award from the UT Southwestern Cecil H. and Ida Green Center for Reproductive Biology Sciences. Other UT Southwestern researchers involved in the work include Dr. Kent Hamra, Assistant Professor of Pharmacology;  Dr. James Amatruda, Associate Professor of Pediatrics, Internal Medicine, and Molecular Biology, the Horchow Family Scholar in Pediatrics and holder of the Nearburg Family Professorship in Pediatric Oncology Research; Dr. Anita Sengupta, Assistant Professor of Pathology; Dr. Ileana Cuevas, Instructor of Pathology; Dr. Yuji Nakada, Instructor of Pathology; Abhijit Bugde, Department of Cell Biology; graduate student researchers Hatice Saatcioglu, Christopher Peña, and Hema Manjunath; and former UT Southwestern researchers Dr. Michael Baker, Dr. Edward Tarnawa, and Jishnu Mukherjee.

The work was sponsored by the David M. Crowley Foundation with additional support through grants from the National Cancer Institute and the State of Texas Norman Hackerman Advanced Research Program.

UT Southwestern’s Harold C. Simmons Cancer Center is the only National Cancer Institute-designated cancer center in North Texas and one of just 66 NCI-designated cancer centers in the nation. The Harold C. Simmons Cancer Center includes 13 major cancer care programs with a focus on treating the whole patient with innovative treatments, while fostering groundbreaking basic research that has the potential to improve patient care and prevention of cancer worldwide. In addition, the Center’s education and training programs support and develop the next generation of cancer researchers and clinicians.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution’s faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. Numbering more than 2,700, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to nearly 91,000 hospitalized patients and oversee more than 2 million outpatient visits a year.

###

Media Contact: Russell Rian
214-648-3404
russell.rian@utsouthwestern.edu 

Russell Rian | Eurek Alert!
Further information:
http://www.utsouthwestern.edu/newsroom/news-releases/year-2014/sept/pax7-sperm-castrillon.html

Further reports about: Biology Cancer Cell Foundation Medical Pathology Pediatrics chemotherapy drugs protein responsible

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>