Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Potential Key to Lyme Disease

11.02.2009
Researchers at UT Southwestern Medical Center have identified a protein that may help give Lyme disease its bite.

The findings suggest that the bacterial protein, which aids in transporting the metal manganese, is essential for the bacterium that causes Lyme disease to become virulent.

“We believe our findings provide a foundation for further defining metal homeostasis in this human pathogen and may lead to new strategies for thwarting Lyme disease,” said Dr. Michael Norgard, chairman of microbiology at UT Southwestern and senior author of a study now online and in an upcoming issue of the Proceedings of the National Academy of Sciences.

Lyme disease, discovered in 1977, is the most prevalent tick-borne infection in the U.S. Borrelia burgdorfei, the bacterium that causes Lyme disease, lives in infected mammals and in the midgut of ticks. When an infected tick bites an animal or a human, the bacteria are transmitted to the new host. Infection causes fever, malaise, fatigue, headache, muscle and joint aches, and a characteristic “bull’s-eye” rash that surrounds the site of infection.

To establish infection, however, the bacterium also must acquire a number of essential nutrients, including metals like manganese from its mammalian and tick hosts. Until now, no metal transporter responsible for this acquisition had been identified in this bacterium.

In the current study, microbiologists examined whether bacteria genetically engineered to lack this manganese transporter, called BmtA, transmitted Lyme disease to ticks and mice. The bacterium lacking the transporter, Dr. Norgard said, grows a bit more slowly in the test tube but is not dramatically different from the normal version.

“When you try to grow it in a mouse, however, it can’t grow,” he said. “The fact that the bacterium without this particular manganese transporter can’t grow in a mouse raises important questions about what aspects of physiology and metabolism contribute to the pathogenicity of the organism.”

Lead author Dr. Zhiming Ouyang, postdoctoral researcher in microbiology at UT Southwestern, said another newly discovered characteristic about the bacterium that causes Lyme disease is that it doesn’t seem to require iron to function, something most other pathogens need to survive.

“Out of the thousands of bacteria known, the Lyme disease agent and only one or two other bacterial species do not require iron for growth,” Dr. Ouyang said. “That raises the question as to what other metal co-factors the Lyme disease bacterium depends on to carry out the work that iron does for all these other biological systems. Our research suggests that manganese is a really important one.”

The next step is to understand the exact mechanism of how manganese functions in the organism.

“I really think that there’s also something to the notion that manganese may regulate the expression of other virulence factors,” Dr. Norgard said. “It could be that manganese has more of an indirect effect, but more research is needed to determine what must happen for Borrelia burgdorfei to become virulent.”

Researchers from Indiana University School of Medicine collaborated on the study.

The research was funded by the National Institute of Allergy and Infectious Diseases.

Dr. Michael Norgard -- http://www.utsouthwestern.edu/findfac/professional/0,2356,15356,00.html

Kristen Holland Shear | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>