Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify likely origins of vertebrate air breathing

17.10.2012
University of Alaska Fairbanks scientists have identified what they think is the ancestral trait that allowed for the evolution of air breathing in vertebrates. They will present their research at the 42nd annual meeting of the Society for Neuroscience Oct. 17 in New Orleans.
“To breathe air with a lung you need more than a lung, you need neural circuitry that is sensitive to carbon dioxide,” said Michael Harris, a UAF neuroscientist and lead researcher on a project investigating the mechanisms that generate and control breathing.

“It’s the neural circuitry that allows air-breathing organisms to take in oxygen, which cells need to convert food into energy, and expel the waste carbon dioxide resulting from that process,” he said. “I’m interested in where that carbon-dioxide-sensitive neural circuit, called a rhythm generator, came from.”

Harris and colleagues think that air breathing likely evolved in an ancestral vertebrate that did not have a lung, but did have a rhythm generator.

“We try to find living examples of primitive non-air-breathing ancestors, like lamprey, and then look for evidence of a rhythm generator that did something other than air breathing,” Harris said.

Lampreys are ancient fish that have characteristics similar to the first vertebrates. They do not have lungs and do not breathe air. As larvae, they live in tubes dug into soft mud and breathe and feed by pumping water through their bodies. When mud or debris clogs a lamprey’s tube, they use a cough-like behavior to expel water and clear the tube. A rhythm generator in their brain controls that behavior.

“We thought the lamprey ‘cough’ closely resembled air breathing in amphibians,” said Harris. “When we removed the brains from lampreys and measured nerve activity that would normally be associated with breathing, we found patterns that resemble breathing and found that the rhythm generator was sensitive to carbon dioxide.”

Air breathing evolved in fish and allowed the movement of vertebrates to land and the evolution of reptiles, birds and mammals. Without a carbon-dioxide-sensitive rhythm generator, the structure that would become the lung might not have worked as a lung.

“The evolution of lung breathing may be a repurposing of carbon dioxide sensitive cough that already existed in lungless vertebrates, like the lamprey,” said Harris.

Harris and collaborators Barbara Taylor, a UAF neuroscientist, and their lab technician Megan Hoffman, also study Sudden Infant Death Syndrome and hope understanding the evolutionary origin of breathing will provide insights into their SIDS research.

ADDITIONAL CONTACTS: Michael Harris, associate professor of integrative physiology and neuroscience, 907-474-7801, mbharris@alaska.edu. Barbara Taylor, associate professor of biology in neuroscience, 907-474-2487, betaylor@alaska.edu. Megan Hoffman, research technician, 907-474-5024, mhoffman2@alaska.edu

ON THE WEB: Society for Neuroscience annual meeting: http://www.sfn.org/am2012/

Marie Thoms | EurekAlert!
Further information:
http://www.iab.uaf.edu
http://www.iab.uaf.edu/news/news_release_by_id.php?release_id=104

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>