Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify likely origins of vertebrate air breathing

17.10.2012
University of Alaska Fairbanks scientists have identified what they think is the ancestral trait that allowed for the evolution of air breathing in vertebrates. They will present their research at the 42nd annual meeting of the Society for Neuroscience Oct. 17 in New Orleans.
“To breathe air with a lung you need more than a lung, you need neural circuitry that is sensitive to carbon dioxide,” said Michael Harris, a UAF neuroscientist and lead researcher on a project investigating the mechanisms that generate and control breathing.

“It’s the neural circuitry that allows air-breathing organisms to take in oxygen, which cells need to convert food into energy, and expel the waste carbon dioxide resulting from that process,” he said. “I’m interested in where that carbon-dioxide-sensitive neural circuit, called a rhythm generator, came from.”

Harris and colleagues think that air breathing likely evolved in an ancestral vertebrate that did not have a lung, but did have a rhythm generator.

“We try to find living examples of primitive non-air-breathing ancestors, like lamprey, and then look for evidence of a rhythm generator that did something other than air breathing,” Harris said.

Lampreys are ancient fish that have characteristics similar to the first vertebrates. They do not have lungs and do not breathe air. As larvae, they live in tubes dug into soft mud and breathe and feed by pumping water through their bodies. When mud or debris clogs a lamprey’s tube, they use a cough-like behavior to expel water and clear the tube. A rhythm generator in their brain controls that behavior.

“We thought the lamprey ‘cough’ closely resembled air breathing in amphibians,” said Harris. “When we removed the brains from lampreys and measured nerve activity that would normally be associated with breathing, we found patterns that resemble breathing and found that the rhythm generator was sensitive to carbon dioxide.”

Air breathing evolved in fish and allowed the movement of vertebrates to land and the evolution of reptiles, birds and mammals. Without a carbon-dioxide-sensitive rhythm generator, the structure that would become the lung might not have worked as a lung.

“The evolution of lung breathing may be a repurposing of carbon dioxide sensitive cough that already existed in lungless vertebrates, like the lamprey,” said Harris.

Harris and collaborators Barbara Taylor, a UAF neuroscientist, and their lab technician Megan Hoffman, also study Sudden Infant Death Syndrome and hope understanding the evolutionary origin of breathing will provide insights into their SIDS research.

ADDITIONAL CONTACTS: Michael Harris, associate professor of integrative physiology and neuroscience, 907-474-7801, mbharris@alaska.edu. Barbara Taylor, associate professor of biology in neuroscience, 907-474-2487, betaylor@alaska.edu. Megan Hoffman, research technician, 907-474-5024, mhoffman2@alaska.edu

ON THE WEB: Society for Neuroscience annual meeting: http://www.sfn.org/am2012/

Marie Thoms | EurekAlert!
Further information:
http://www.iab.uaf.edu
http://www.iab.uaf.edu/news/news_release_by_id.php?release_id=104

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>