Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify new protein in the neurological disorder dystonia

07.05.2014

Potential for treatments anticipated

A collaborative discovery involving Kansas State University researchers may lead to the first universal treatment for dystonia, a neurological disorder that affects nearly half a million Americans.

Michal Zolkiewski, associate professor of biochemistry and molecular biophysics at Kansas State University, and Jeffrey Brodsky at the University at Pittsburgh co-led a study that focused on a mutated protein associated with early onset torsion dystonia, or EOTD, the most severe type of dystonia that typically affects adolescents before the age of 20. Dystonia causes involuntary and sustained muscle contractions that can lead to paralysis and abnormal postures.

"It's a painful and debilitating disease for which there is no cure or treatment that would be effective for all patients," Zolkiewski said. "There are some treatments that are being tested, but nothing is really available to those patients that would cure the symptoms completely."

In addition to Zolkiewski and Brodsky, researchers involved in the study included Hui-Chuan Wu, Kansas State University doctoral student in biochemistry and molecular biophysics, Taiwan, and colleagues at the University of Texas Southwestern Medical Center and the University of Adelaide in Australia.

The Journal of Biological Chemistry recently published the team's study, "The BiP molecular chaperone plays multiple roles during the biogenesis of TorsinA, a AAA+ ATPase associated with the neurological disease Early-Onset Torsion Dystonia." The study was funded by the Dystonia Medical Research Foundation.

Researchers built the study on a decade-old discovery that patients with early onset torsion dystonia typically have a mutated gene that encodes the protein TorsionA.

"TorsinA is a protein that all people have in their bodies," Zolkiewski said. "It appears to perform an important role in the nervous system, but currently nobody knows what that role is. There also is no understanding of the link between the mutation and dystonia."

In order to study protein expression in a living organism, researchers used yeast — one of the simplest living systems. The yeast was engineered to produce the human protein TorsionA.

Observations revealed that a second protein named BiP — pronounced "dip" — helps process the TorsinA protein and maintain its active form. Additionally, researchers found that BiP also guides TorsinA to being destroyed by cells if the protein is defective. Humans carry the BiP protein as well as the TorsinA protein.

"BiP is a molecular chaperone that assists other proteins in maintaining their function," Zolkiewski said. "In this study we found that BiP really has a dual role. On one hand it's helping TorsinA and on the other it's leading to its degradation."

Future studies may focus on BiP as a target for treating dystonia, as modulating BiP in human cells would affect TorsinA, Zolkiewski said.

"Because we don't know what exactly the function of TorsinA is, we may not be able to design a treatment based on that protein," Zolkiewski said. "We know what BiP does, however. It is a pretty well-studied chaperone, which makes it much easier to work with."

Michal Zolkiewski | Eurek Alert!
Further information:
http://www.k-state.edu

Further reports about: chaperone defective disorder dystonia function identify neurological

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>