Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify new protein in the neurological disorder dystonia

07.05.2014

Potential for treatments anticipated

A collaborative discovery involving Kansas State University researchers may lead to the first universal treatment for dystonia, a neurological disorder that affects nearly half a million Americans.

Michal Zolkiewski, associate professor of biochemistry and molecular biophysics at Kansas State University, and Jeffrey Brodsky at the University at Pittsburgh co-led a study that focused on a mutated protein associated with early onset torsion dystonia, or EOTD, the most severe type of dystonia that typically affects adolescents before the age of 20. Dystonia causes involuntary and sustained muscle contractions that can lead to paralysis and abnormal postures.

"It's a painful and debilitating disease for which there is no cure or treatment that would be effective for all patients," Zolkiewski said. "There are some treatments that are being tested, but nothing is really available to those patients that would cure the symptoms completely."

In addition to Zolkiewski and Brodsky, researchers involved in the study included Hui-Chuan Wu, Kansas State University doctoral student in biochemistry and molecular biophysics, Taiwan, and colleagues at the University of Texas Southwestern Medical Center and the University of Adelaide in Australia.

The Journal of Biological Chemistry recently published the team's study, "The BiP molecular chaperone plays multiple roles during the biogenesis of TorsinA, a AAA+ ATPase associated with the neurological disease Early-Onset Torsion Dystonia." The study was funded by the Dystonia Medical Research Foundation.

Researchers built the study on a decade-old discovery that patients with early onset torsion dystonia typically have a mutated gene that encodes the protein TorsionA.

"TorsinA is a protein that all people have in their bodies," Zolkiewski said. "It appears to perform an important role in the nervous system, but currently nobody knows what that role is. There also is no understanding of the link between the mutation and dystonia."

In order to study protein expression in a living organism, researchers used yeast — one of the simplest living systems. The yeast was engineered to produce the human protein TorsionA.

Observations revealed that a second protein named BiP — pronounced "dip" — helps process the TorsinA protein and maintain its active form. Additionally, researchers found that BiP also guides TorsinA to being destroyed by cells if the protein is defective. Humans carry the BiP protein as well as the TorsinA protein.

"BiP is a molecular chaperone that assists other proteins in maintaining their function," Zolkiewski said. "In this study we found that BiP really has a dual role. On one hand it's helping TorsinA and on the other it's leading to its degradation."

Future studies may focus on BiP as a target for treating dystonia, as modulating BiP in human cells would affect TorsinA, Zolkiewski said.

"Because we don't know what exactly the function of TorsinA is, we may not be able to design a treatment based on that protein," Zolkiewski said. "We know what BiP does, however. It is a pretty well-studied chaperone, which makes it much easier to work with."

Michal Zolkiewski | Eurek Alert!
Further information:
http://www.k-state.edu

Further reports about: chaperone defective disorder dystonia function identify neurological

More articles from Life Sciences:

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

nachricht Bio-fabrication of Artificial Blood Vessels with Laser Light
28.08.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>