Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists identify the neural circuitry of first impressions

Neuroscientists at New York University and Harvard University have identified the neural systems involved in forming first impressions of others. The findings, which show how we encode social information and then evaluate it in making these initial judgments, are reported in the most recent issue of the journal Nature Neuroscience.

Making sense of others in a social interaction is not easy—each new person we meet may be a source of ambiguous and complex information. However, when encountering someone for the first time, we are often quick to judge whether we like that person or not. In fact, previous research has shown that people make relatively accurate and persistent evaluations based on rapid observations of even less than half a minute.

The Nature Neuroscience study sought to investigate the brain mechanisms that give rise to impressions formed immediately after meeting a new person. It was conducted in the laboratory of Elizabeth Phelps, an NYU professor of psychology and neuroscience and one of the co-authors. The study's lead author was Daniela Schiller, a post-doctoral fellow in NYU's Department of Psychology and its Center for Neural Science. The other co-authors were: Jonathan Freeman, a former NYU undergraduate who is currently a doctoral candidate at Tufts University; James Mitchell, an assistant professor at Harvard University's Department of Psychology; and James Uleman, a professor in NYU's Department of Psychology.

To explore the process of first impression formation, the researchers designed an experiment in which they examined the brain activity when these participants made initial evaluations of fictional individuals. The participants were given written profiles of 20 individuals implying different personality traits. The profiles, presented along with pictures of these fictional individuals, included scenarios indicating both positive (e.g., intelligent) and negative (e.g., lazy) traits in their depictions.

After reading the profiles, the participants were asked to evaluate how much they liked or disliked each profiled individual. These impressions varied depending on how much each participant valued the different positive and negative traits conveyed. For instance, if a participant liked intelligence more than they disliked laziness, he or she might form a positive impression. During this impression formation period, participants' brain activity was observed using functional magnetic resonance imaging (fMRI). Based on the participants' ratings, the researchers were able to determine the difference in brain activity when they encountered information that was more, as opposed to less, important in forming the first impression.

The neuroimaging results showed significant activity in two regions of the brain during the encoding of impression-relevant information. The first, the amygdala, is a small structure in the medial temporal lobe that previously has been linked to emotional learning about inanimate objects, as well as social evaluations based on trust or race group. The second, the posterior cingulate cortex (PCC), has been linked to economic decision-making and assigning subjective value to rewards. In the Nature Neuroscience study, these parts of the brain, which are implicated in value processing in a number of domains, showed increased activity when encoding information that was consistent with the impression.

"Even when we only briefly encounter others, brain regions that are important in forming evaluations are engaged, resulting in a quick first impression," commented NYU's Phelps.

NYU's Schiller, the study's lead author, concluded, "When encoding everyday social information during a social encounter, these regions sort information based on its personal and subjective significance, and summarize it into an ultimate score--a first impression."

James Devitt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>