Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Identify New Molecules Important for Vision and Brain Function

In a pair of related studies, scientists from the Florida campus of The Scripps Research Institute have identified several proteins that help regulate cells’ response to light—and the development of night blindness, a rare disease that abolishes the ability to see in dim light.

In the new studies, published recently in the journals Proceedings of the National Academy of Sciences (PNAS) and The Journal of Cell Biology, Scripps Florida scientists were able to show that a family of proteins known as Regulator of G protein Signaling (RGS) proteins plays an essential role in vision in a dim-light environment.

“We were looking at the fundamental mechanisms that shape our light sensation,” said Kirill Martemyanov, a Scripps Research associate professor who led the studies. “In the process, we discovered a pair of molecules that are indispensible for our vision and possibly play critical roles in the brain.”

In the PNAS study, Martemyanov and his colleagues identified a pair of regulator proteins known as RGS7 and RGS11 that are present specifically in the main relay neurons of the retina called the ON-bipolar cells. “The ON-bipolar cells provide an essential link between the retinal light detectors—photoreceptors and the neurons that send visual information to the brain,” explained Martemyanov. “Stimulation with light excites these neurons by opening the channel that is normally kept shut by the G proteins in the dark. RGS7 and RGS11 facilitate the G protein inactivation, thus promoting the opening of the channel and allowing the ON-bipolar cells to transmit the light signal. It really takes a combined effort of two RGS proteins to help the light overcome the barrier for propagating the excitation that makes our dim vision possible.”

In the Journal of Cell Biology study, Martemyanov and his colleagues unraveled another key aspect of the RGS7/RGS11 regulatory response—they identified a previously unknown pair of orphan G protein-coupled receptors (GPCRs) that interact with these RGS proteins and dictate their biological function.

GPCRs are a large family of more than 700 proteins, which sit in the cell membrane and sense various molecules outside the cell, including odors, hormones, neurotransmitters, and light. After binding these molecules, GPCRs trigger the appropriate response inside the cell. However, for many GPCRs the activating molecules have not yet been identified and these are called “orphan” receptors.

The Martemyanov group has found that two orphan GPCRs—GPR158 and GPR179—recruit RGS proteins and thus help serve as brakes for the conventional GPCR signaling rather than play an active signaling role.

In the case of retinal ON-bipolar cells, GPR179 is required for the correct localization of RGS7 and RGS11. Their mistargeting in animal models lacking GPR179 or human patients with mutations in the GPR179 gene may account for their night blindness, according to the new study. Intriguingly, in the brain GPR158 appears to play a similar role in localizing RGS proteins, but instead of contributing to vision, it helps RGS proteins regulate the m-opioid receptor, a GPCRs that mediates pleasurable and pain-killing effects of opioids.

“We are really in the very beginning of unraveling this new biology and understanding the role of discovered orphan GPR158/179 in regulation of neurotransmitter signaling in the brain and retina,” Martemyanov said. “The hope is that better understanding of these new molecules will lead to the design of better treatments for addictive disorders, pain, and blindness.”

The first author of the PNAS study, “Regulators of G Protein Signaling RGS7 and RGS11 Determine the Onset of the Light Response in ON Bipolar Neurons” is Yan Cao of The Scripps Research Institute. Other authors include Johan Pahlberg and Alapakkam P. Sampath of the University of Southern California; Ignacio Sarria of The Scripps Research Institute; and Naomi Kamasawa of the Max Planck Florida Institute. See

The first author of the Journal of Cell Biology study, “GPR158/179 Regulate G Protein Signaling by Controlling Localization and Activity of the RGS7 Complexes” is Cesare Orlandi of The Scripps Research Institute. Other authors include Ekaterina Posokhova and Ikuo Masuho of The Scripps Research Institute and Thomas A. Ray, Nazarul Hasan, and Ronald G. Gregg of the University of Louisville, Kentucky. See

Both studies were supported by the National Institutes of Health. The PNAS study was also supported by the McKnight Endowment Fund for Neurosciences

The first study was published in the May 15, 2012 issue of the journal Proceedings of the National Academy of Sciences. The second study was published June 11, 2012 by The Journal of Cell Biology.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, Scripps Research has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see
For information:
Office of Communications
Tel: 858-784-8134
Fax: 858-784-8136

Mika Ono | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>