Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify New Molecules Important for Vision and Brain Function

12.06.2012
In a pair of related studies, scientists from the Florida campus of The Scripps Research Institute have identified several proteins that help regulate cells’ response to light—and the development of night blindness, a rare disease that abolishes the ability to see in dim light.

In the new studies, published recently in the journals Proceedings of the National Academy of Sciences (PNAS) and The Journal of Cell Biology, Scripps Florida scientists were able to show that a family of proteins known as Regulator of G protein Signaling (RGS) proteins plays an essential role in vision in a dim-light environment.

“We were looking at the fundamental mechanisms that shape our light sensation,” said Kirill Martemyanov, a Scripps Research associate professor who led the studies. “In the process, we discovered a pair of molecules that are indispensible for our vision and possibly play critical roles in the brain.”

In the PNAS study, Martemyanov and his colleagues identified a pair of regulator proteins known as RGS7 and RGS11 that are present specifically in the main relay neurons of the retina called the ON-bipolar cells. “The ON-bipolar cells provide an essential link between the retinal light detectors—photoreceptors and the neurons that send visual information to the brain,” explained Martemyanov. “Stimulation with light excites these neurons by opening the channel that is normally kept shut by the G proteins in the dark. RGS7 and RGS11 facilitate the G protein inactivation, thus promoting the opening of the channel and allowing the ON-bipolar cells to transmit the light signal. It really takes a combined effort of two RGS proteins to help the light overcome the barrier for propagating the excitation that makes our dim vision possible.”

In the Journal of Cell Biology study, Martemyanov and his colleagues unraveled another key aspect of the RGS7/RGS11 regulatory response—they identified a previously unknown pair of orphan G protein-coupled receptors (GPCRs) that interact with these RGS proteins and dictate their biological function.

GPCRs are a large family of more than 700 proteins, which sit in the cell membrane and sense various molecules outside the cell, including odors, hormones, neurotransmitters, and light. After binding these molecules, GPCRs trigger the appropriate response inside the cell. However, for many GPCRs the activating molecules have not yet been identified and these are called “orphan” receptors.

The Martemyanov group has found that two orphan GPCRs—GPR158 and GPR179—recruit RGS proteins and thus help serve as brakes for the conventional GPCR signaling rather than play an active signaling role.

In the case of retinal ON-bipolar cells, GPR179 is required for the correct localization of RGS7 and RGS11. Their mistargeting in animal models lacking GPR179 or human patients with mutations in the GPR179 gene may account for their night blindness, according to the new study. Intriguingly, in the brain GPR158 appears to play a similar role in localizing RGS proteins, but instead of contributing to vision, it helps RGS proteins regulate the m-opioid receptor, a GPCRs that mediates pleasurable and pain-killing effects of opioids.

“We are really in the very beginning of unraveling this new biology and understanding the role of discovered orphan GPR158/179 in regulation of neurotransmitter signaling in the brain and retina,” Martemyanov said. “The hope is that better understanding of these new molecules will lead to the design of better treatments for addictive disorders, pain, and blindness.”

The first author of the PNAS study, “Regulators of G Protein Signaling RGS7 and RGS11 Determine the Onset of the Light Response in ON Bipolar Neurons” is Yan Cao of The Scripps Research Institute. Other authors include Johan Pahlberg and Alapakkam P. Sampath of the University of Southern California; Ignacio Sarria of The Scripps Research Institute; and Naomi Kamasawa of the Max Planck Florida Institute. See http://www.pnas.org/content/109/20/7905.long

The first author of the Journal of Cell Biology study, “GPR158/179 Regulate G Protein Signaling by Controlling Localization and Activity of the RGS7 Complexes” is Cesare Orlandi of The Scripps Research Institute. Other authors include Ekaterina Posokhova and Ikuo Masuho of The Scripps Research Institute and Thomas A. Ray, Nazarul Hasan, and Ronald G. Gregg of the University of Louisville, Kentucky. See http://jcb.rupress.org/content/197/6/711.abstract

Both studies were supported by the National Institutes of Health. The PNAS study was also supported by the McKnight Endowment Fund for Neurosciences

The first study was published in the May 15, 2012 issue of the journal Proceedings of the National Academy of Sciences. The second study was published June 11, 2012 by The Journal of Cell Biology.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, Scripps Research has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-8134
Fax: 858-784-8136
press@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>