Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify New Molecules Important for Vision and Brain Function

12.06.2012
In a pair of related studies, scientists from the Florida campus of The Scripps Research Institute have identified several proteins that help regulate cells’ response to light—and the development of night blindness, a rare disease that abolishes the ability to see in dim light.

In the new studies, published recently in the journals Proceedings of the National Academy of Sciences (PNAS) and The Journal of Cell Biology, Scripps Florida scientists were able to show that a family of proteins known as Regulator of G protein Signaling (RGS) proteins plays an essential role in vision in a dim-light environment.

“We were looking at the fundamental mechanisms that shape our light sensation,” said Kirill Martemyanov, a Scripps Research associate professor who led the studies. “In the process, we discovered a pair of molecules that are indispensible for our vision and possibly play critical roles in the brain.”

In the PNAS study, Martemyanov and his colleagues identified a pair of regulator proteins known as RGS7 and RGS11 that are present specifically in the main relay neurons of the retina called the ON-bipolar cells. “The ON-bipolar cells provide an essential link between the retinal light detectors—photoreceptors and the neurons that send visual information to the brain,” explained Martemyanov. “Stimulation with light excites these neurons by opening the channel that is normally kept shut by the G proteins in the dark. RGS7 and RGS11 facilitate the G protein inactivation, thus promoting the opening of the channel and allowing the ON-bipolar cells to transmit the light signal. It really takes a combined effort of two RGS proteins to help the light overcome the barrier for propagating the excitation that makes our dim vision possible.”

In the Journal of Cell Biology study, Martemyanov and his colleagues unraveled another key aspect of the RGS7/RGS11 regulatory response—they identified a previously unknown pair of orphan G protein-coupled receptors (GPCRs) that interact with these RGS proteins and dictate their biological function.

GPCRs are a large family of more than 700 proteins, which sit in the cell membrane and sense various molecules outside the cell, including odors, hormones, neurotransmitters, and light. After binding these molecules, GPCRs trigger the appropriate response inside the cell. However, for many GPCRs the activating molecules have not yet been identified and these are called “orphan” receptors.

The Martemyanov group has found that two orphan GPCRs—GPR158 and GPR179—recruit RGS proteins and thus help serve as brakes for the conventional GPCR signaling rather than play an active signaling role.

In the case of retinal ON-bipolar cells, GPR179 is required for the correct localization of RGS7 and RGS11. Their mistargeting in animal models lacking GPR179 or human patients with mutations in the GPR179 gene may account for their night blindness, according to the new study. Intriguingly, in the brain GPR158 appears to play a similar role in localizing RGS proteins, but instead of contributing to vision, it helps RGS proteins regulate the m-opioid receptor, a GPCRs that mediates pleasurable and pain-killing effects of opioids.

“We are really in the very beginning of unraveling this new biology and understanding the role of discovered orphan GPR158/179 in regulation of neurotransmitter signaling in the brain and retina,” Martemyanov said. “The hope is that better understanding of these new molecules will lead to the design of better treatments for addictive disorders, pain, and blindness.”

The first author of the PNAS study, “Regulators of G Protein Signaling RGS7 and RGS11 Determine the Onset of the Light Response in ON Bipolar Neurons” is Yan Cao of The Scripps Research Institute. Other authors include Johan Pahlberg and Alapakkam P. Sampath of the University of Southern California; Ignacio Sarria of The Scripps Research Institute; and Naomi Kamasawa of the Max Planck Florida Institute. See http://www.pnas.org/content/109/20/7905.long

The first author of the Journal of Cell Biology study, “GPR158/179 Regulate G Protein Signaling by Controlling Localization and Activity of the RGS7 Complexes” is Cesare Orlandi of The Scripps Research Institute. Other authors include Ekaterina Posokhova and Ikuo Masuho of The Scripps Research Institute and Thomas A. Ray, Nazarul Hasan, and Ronald G. Gregg of the University of Louisville, Kentucky. See http://jcb.rupress.org/content/197/6/711.abstract

Both studies were supported by the National Institutes of Health. The PNAS study was also supported by the McKnight Endowment Fund for Neurosciences

The first study was published in the May 15, 2012 issue of the journal Proceedings of the National Academy of Sciences. The second study was published June 11, 2012 by The Journal of Cell Biology.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, Scripps Research has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-8134
Fax: 858-784-8136
press@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>