Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists identify new mechanism regulating daily biological rhythms

Findings offer novel target for treatment of sleep disorders, diabetes and cancer

For Immediate Release – Scientists from the Florida campus of The Scripps Research Institute have identified for the first time a novel mechanism that regulates circadian rhythm, the master clock that controls the body's natural 24-hour physiological cycle.

These new findings could provide a new target not only for jet lag, shift work, and sleep disturbances, but also for disorders that result from circadian rhythm disruption, including diabetes and obesity as well as some types of cancer.

The study is published in the November 12, 2010 edition (Volume 285, Number 45) of the Journal of Biological Chemistry.

"It's well known that the nuclear receptors RORá and REV-ERBá regulate expression of the gene BMAL1, which is vital to virtually every aspect of human physiology and a core component of the circadian clock," said Tom Burris, a professor in the Department of Molecular Therapeutics at Scripps Florida who led the study. "BMAL1 functions as an obligate heterodimer (only working as a dimer with a partner) with either CLOCK or NPAS2 so it was unclear how RORa and REV-ERBa could control this complex. In this study, we show that both partners are targets. As we understand more about the relationship between these receptors and their gene targets, we can consider the possibility of modulating the body's core clock, especially as we continue to develop synthetic ligands targeting these two nuclear receptors."

Circadian rhythms are conserved across a wide variety of organisms, from Drosophila (fruit flies) to humans. In mammals, these rhythms respond to light signals and are controlled by the "master clock" in the brain. In the periphery, semi-autonomous clocks can respond to signals from the brain and from other cues including nutrient status. Disorders linked to dysfunctional circadian rhythms can be severe and potentially deadly, Burris said.

"When you're dealing with circadian rhythm, the most obvious disease target is sleep – for people who do shift work, critical jobs like police work, fire fighting, and medicine," he said. "If circadian rhythm is disrupted, you're prone to metabolic disorders like diabetes and obesity and even breast cancer – because the core clock is closely linked to the cell cycle. If your clock goes awry, you run the risk of your cell cycle going awry as well."

The Role of Nuclear Receptors

Nuclear receptors are proteins that recognize and regulate hormones as well as other molecules. As a result, they control an organism's metabolism by activating gene expression.

The study found that oscillations in the expression of RORá and REV-ERBá not only influence the pattern of circadian expression of BMAL1, but also of NPAS2, a protein that is part of the circadian clock. The fact that NPAS2 is a target of both receptors suggests that there is a specific mechanism that coordinates the relative levels of each receptor to maintain correct circadian function..

"Based on the fact that BMAL1 and NPAS2 work together within the circadian clock, it seems highly unlikely that these two nuclear receptors would only regulate one of them," Burris said. "Our study shows for the first time that, like BMAL1, NPAS2 is also a direct target for RORá and REV-ERBá. This discovery makes this complex a very good therapeutic target."

The expression of RORá and REV-ERBá follows a 24-hour circadian pattern (with opposing phases) leading to the correct circadian pattern of gene expression of BMAL1 and NPAS2.

"We think it's something of a competition between these two receptors for binding to promoters of these genes that triggers either the activation (RORá) or repression (REV-ERBá) of the gene," Burris said.

Nuclear receptors make tempting drug targets because they can bind directly to DNA and activate genes through specific ligands—molecules that affect receptor behavior—such as the sex hormones, vitamins A and D, and glucocorticoids, which modulate the body's response to stress. Nuclear receptors have been implicated in a number of cancers, including prostate, breast, and colon cancers, and other diseases as well, including type 2 diabetes, atherosclerosis, and metabolic syndrome.

The other important aspect of nuclear receptors is their practicality. Scientists can design small molecule therapeutics to force them to change their ways. Burris said that he has already identified several new synthetic ligands (drug like molecules) for both receptors.

The first author of the study, "Characterization of the Core Mammalian Clock Component, NPAS2, as a REV-­ERBá/RORá Target Gene," is Christine Crumbley of The Scripps Research Institute. Others authors include Yongjun Wang and Douglas J. Kojetin, also of Scripps Research. For more information, see This work was funded by the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, Scripps Research currently employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Headquartered in La Jolla, California, the institute also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Mika Ono | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>