Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists identify new mechanism regulating daily biological rhythms

Findings offer novel target for treatment of sleep disorders, diabetes and cancer

For Immediate Release – Scientists from the Florida campus of The Scripps Research Institute have identified for the first time a novel mechanism that regulates circadian rhythm, the master clock that controls the body's natural 24-hour physiological cycle.

These new findings could provide a new target not only for jet lag, shift work, and sleep disturbances, but also for disorders that result from circadian rhythm disruption, including diabetes and obesity as well as some types of cancer.

The study is published in the November 12, 2010 edition (Volume 285, Number 45) of the Journal of Biological Chemistry.

"It's well known that the nuclear receptors RORá and REV-ERBá regulate expression of the gene BMAL1, which is vital to virtually every aspect of human physiology and a core component of the circadian clock," said Tom Burris, a professor in the Department of Molecular Therapeutics at Scripps Florida who led the study. "BMAL1 functions as an obligate heterodimer (only working as a dimer with a partner) with either CLOCK or NPAS2 so it was unclear how RORa and REV-ERBa could control this complex. In this study, we show that both partners are targets. As we understand more about the relationship between these receptors and their gene targets, we can consider the possibility of modulating the body's core clock, especially as we continue to develop synthetic ligands targeting these two nuclear receptors."

Circadian rhythms are conserved across a wide variety of organisms, from Drosophila (fruit flies) to humans. In mammals, these rhythms respond to light signals and are controlled by the "master clock" in the brain. In the periphery, semi-autonomous clocks can respond to signals from the brain and from other cues including nutrient status. Disorders linked to dysfunctional circadian rhythms can be severe and potentially deadly, Burris said.

"When you're dealing with circadian rhythm, the most obvious disease target is sleep – for people who do shift work, critical jobs like police work, fire fighting, and medicine," he said. "If circadian rhythm is disrupted, you're prone to metabolic disorders like diabetes and obesity and even breast cancer – because the core clock is closely linked to the cell cycle. If your clock goes awry, you run the risk of your cell cycle going awry as well."

The Role of Nuclear Receptors

Nuclear receptors are proteins that recognize and regulate hormones as well as other molecules. As a result, they control an organism's metabolism by activating gene expression.

The study found that oscillations in the expression of RORá and REV-ERBá not only influence the pattern of circadian expression of BMAL1, but also of NPAS2, a protein that is part of the circadian clock. The fact that NPAS2 is a target of both receptors suggests that there is a specific mechanism that coordinates the relative levels of each receptor to maintain correct circadian function..

"Based on the fact that BMAL1 and NPAS2 work together within the circadian clock, it seems highly unlikely that these two nuclear receptors would only regulate one of them," Burris said. "Our study shows for the first time that, like BMAL1, NPAS2 is also a direct target for RORá and REV-ERBá. This discovery makes this complex a very good therapeutic target."

The expression of RORá and REV-ERBá follows a 24-hour circadian pattern (with opposing phases) leading to the correct circadian pattern of gene expression of BMAL1 and NPAS2.

"We think it's something of a competition between these two receptors for binding to promoters of these genes that triggers either the activation (RORá) or repression (REV-ERBá) of the gene," Burris said.

Nuclear receptors make tempting drug targets because they can bind directly to DNA and activate genes through specific ligands—molecules that affect receptor behavior—such as the sex hormones, vitamins A and D, and glucocorticoids, which modulate the body's response to stress. Nuclear receptors have been implicated in a number of cancers, including prostate, breast, and colon cancers, and other diseases as well, including type 2 diabetes, atherosclerosis, and metabolic syndrome.

The other important aspect of nuclear receptors is their practicality. Scientists can design small molecule therapeutics to force them to change their ways. Burris said that he has already identified several new synthetic ligands (drug like molecules) for both receptors.

The first author of the study, "Characterization of the Core Mammalian Clock Component, NPAS2, as a REV-­ERBá/RORá Target Gene," is Christine Crumbley of The Scripps Research Institute. Others authors include Yongjun Wang and Douglas J. Kojetin, also of Scripps Research. For more information, see This work was funded by the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, Scripps Research currently employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Headquartered in La Jolla, California, the institute also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Mika Ono | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>