Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify new mechanism regulating daily biological rhythms

12.11.2010
Findings offer novel target for treatment of sleep disorders, diabetes and cancer

For Immediate Release – Scientists from the Florida campus of The Scripps Research Institute have identified for the first time a novel mechanism that regulates circadian rhythm, the master clock that controls the body's natural 24-hour physiological cycle.

These new findings could provide a new target not only for jet lag, shift work, and sleep disturbances, but also for disorders that result from circadian rhythm disruption, including diabetes and obesity as well as some types of cancer.

The study is published in the November 12, 2010 edition (Volume 285, Number 45) of the Journal of Biological Chemistry.

"It's well known that the nuclear receptors RORá and REV-ERBá regulate expression of the gene BMAL1, which is vital to virtually every aspect of human physiology and a core component of the circadian clock," said Tom Burris, a professor in the Department of Molecular Therapeutics at Scripps Florida who led the study. "BMAL1 functions as an obligate heterodimer (only working as a dimer with a partner) with either CLOCK or NPAS2 so it was unclear how RORa and REV-ERBa could control this complex. In this study, we show that both partners are targets. As we understand more about the relationship between these receptors and their gene targets, we can consider the possibility of modulating the body's core clock, especially as we continue to develop synthetic ligands targeting these two nuclear receptors."

Circadian rhythms are conserved across a wide variety of organisms, from Drosophila (fruit flies) to humans. In mammals, these rhythms respond to light signals and are controlled by the "master clock" in the brain. In the periphery, semi-autonomous clocks can respond to signals from the brain and from other cues including nutrient status. Disorders linked to dysfunctional circadian rhythms can be severe and potentially deadly, Burris said.

"When you're dealing with circadian rhythm, the most obvious disease target is sleep – for people who do shift work, critical jobs like police work, fire fighting, and medicine," he said. "If circadian rhythm is disrupted, you're prone to metabolic disorders like diabetes and obesity and even breast cancer – because the core clock is closely linked to the cell cycle. If your clock goes awry, you run the risk of your cell cycle going awry as well."

The Role of Nuclear Receptors

Nuclear receptors are proteins that recognize and regulate hormones as well as other molecules. As a result, they control an organism's metabolism by activating gene expression.

The study found that oscillations in the expression of RORá and REV-ERBá not only influence the pattern of circadian expression of BMAL1, but also of NPAS2, a protein that is part of the circadian clock. The fact that NPAS2 is a target of both receptors suggests that there is a specific mechanism that coordinates the relative levels of each receptor to maintain correct circadian function..

"Based on the fact that BMAL1 and NPAS2 work together within the circadian clock, it seems highly unlikely that these two nuclear receptors would only regulate one of them," Burris said. "Our study shows for the first time that, like BMAL1, NPAS2 is also a direct target for RORá and REV-ERBá. This discovery makes this complex a very good therapeutic target."

The expression of RORá and REV-ERBá follows a 24-hour circadian pattern (with opposing phases) leading to the correct circadian pattern of gene expression of BMAL1 and NPAS2.

"We think it's something of a competition between these two receptors for binding to promoters of these genes that triggers either the activation (RORá) or repression (REV-ERBá) of the gene," Burris said.

Nuclear receptors make tempting drug targets because they can bind directly to DNA and activate genes through specific ligands—molecules that affect receptor behavior—such as the sex hormones, vitamins A and D, and glucocorticoids, which modulate the body's response to stress. Nuclear receptors have been implicated in a number of cancers, including prostate, breast, and colon cancers, and other diseases as well, including type 2 diabetes, atherosclerosis, and metabolic syndrome.

The other important aspect of nuclear receptors is their practicality. Scientists can design small molecule therapeutics to force them to change their ways. Burris said that he has already identified several new synthetic ligands (drug like molecules) for both receptors.

The first author of the study, "Characterization of the Core Mammalian Clock Component, NPAS2, as a REV-­ERBá/RORá Target Gene," is Christine Crumbley of The Scripps Research Institute. Others authors include Yongjun Wang and Douglas J. Kojetin, also of Scripps Research. For more information, see http://www.jbc.org/content/285/46/35386.abstract This work was funded by the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, Scripps Research currently employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Headquartered in La Jolla, California, the institute also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>