Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify link between size of brain region and conformity

21.02.2012
Every generation has its James Dean: the rebel who refuses to follow the path beaten by their peers. Now, a new study in Current Biology has found a link between the amount of grey matter in one specific brain region and an individual's likelihood of conforming to social pressures.

Individuals are presented with many choices in life, from political alignments through to choosing which sandwich to eat for lunch. Their eventual decisions can be influenced by the options chosen by those around them. Although differences in individuals' tendencies to conform to social pressures are commonly observed, no anatomical measure has previously been linked to the likelihood of someone conforming under the influence of their peers.

Now, in research funded by the Danish National Research Foundation and the Wellcome Trust, scientists at New York University, Aarhus University and the Wellcome Trust Centre for Neuroimaging at UCL (University College London) have identified the first such measure to predict how an individual will react to social pressure.

To identify structural measures of the brain that could relate to this trait, the team first measured the volumes of brain regions in 28 participants. This approach involved a technique known as voxel based morphometry, which allows researchers to measure the volume of grey matter (the nerve cells where the processing takes place) from three-dimensional images of the brain provided by magnetic resonance imaging (MRI) scans.

To measure how participants responded to social influence, they were tested to see how their preferences for certain pieces of music changed after being told what authoritative 'music critics' thought about them.

A week prior to testing, each participant listed 20 songs they liked but didn't personally own. On the day of the test, the participants rated their choices out of ten.

Next, the researchers stated that music critics with expert opinions had listened to the participants' choices and had also rated these songs out of ten. The participants then performed a task comparing their choices with unknown music. Following the task, the participants rerated their 20 choices, and the degree to which their opinions differed in light of hearing the critics' ratings served as a measure of conformity under social influence.

Strikingly, only grey matter volume in one precise brain region — the lateral orbitofrontal cortex — was associated with this measure of social influence. The linear relationship between grey matter volume and the tendency of individuals to conform was observed in this particular region in both hemispheres of the brain.

In a previous study, the researchers had looked at the level of activity in the participants' brains when faced with disagreement with the experts. This activity predicted how much influence the experts would have. By comparing the measures in this new study with the previous findings, they were able to show that grey matter volume in the lateral orbitofrontal cortex also predicted how individuals responded when the critics disagreed with their opinions. These findings suggest that the brain region is particularly tuned to recognising cues of social conflict, such as when someone disapproves of a choice, which may prompt the subject to update their opinions accordingly.

Study leader Professor Chris Frith says: "The ability to adapt to others and align ourselves with them is an important social skill. However, at what level is this skill implemented in the brain? At a software (information processing) or hardware (structural) level? Our results show that social conformation is, at least in part, hard-wired in the structure of the brain."

Dr Daniel Campbell-Meiklejohn, first author of the study, explains the implications of their findings: "This opens a new chapter on the social consequences of brain atrophy and brain development. People with damage to this region often display changes of personality and social interaction. This finding suggests that perhaps we should look at how these individuals learn what is important from the expressed preferences of others."

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

Further reports about: brain region frontal cortex nerve cell social pressures

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>