Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists identify link between size of brain region and conformity

Every generation has its James Dean: the rebel who refuses to follow the path beaten by their peers. Now, a new study in Current Biology has found a link between the amount of grey matter in one specific brain region and an individual's likelihood of conforming to social pressures.

Individuals are presented with many choices in life, from political alignments through to choosing which sandwich to eat for lunch. Their eventual decisions can be influenced by the options chosen by those around them. Although differences in individuals' tendencies to conform to social pressures are commonly observed, no anatomical measure has previously been linked to the likelihood of someone conforming under the influence of their peers.

Now, in research funded by the Danish National Research Foundation and the Wellcome Trust, scientists at New York University, Aarhus University and the Wellcome Trust Centre for Neuroimaging at UCL (University College London) have identified the first such measure to predict how an individual will react to social pressure.

To identify structural measures of the brain that could relate to this trait, the team first measured the volumes of brain regions in 28 participants. This approach involved a technique known as voxel based morphometry, which allows researchers to measure the volume of grey matter (the nerve cells where the processing takes place) from three-dimensional images of the brain provided by magnetic resonance imaging (MRI) scans.

To measure how participants responded to social influence, they were tested to see how their preferences for certain pieces of music changed after being told what authoritative 'music critics' thought about them.

A week prior to testing, each participant listed 20 songs they liked but didn't personally own. On the day of the test, the participants rated their choices out of ten.

Next, the researchers stated that music critics with expert opinions had listened to the participants' choices and had also rated these songs out of ten. The participants then performed a task comparing their choices with unknown music. Following the task, the participants rerated their 20 choices, and the degree to which their opinions differed in light of hearing the critics' ratings served as a measure of conformity under social influence.

Strikingly, only grey matter volume in one precise brain region — the lateral orbitofrontal cortex — was associated with this measure of social influence. The linear relationship between grey matter volume and the tendency of individuals to conform was observed in this particular region in both hemispheres of the brain.

In a previous study, the researchers had looked at the level of activity in the participants' brains when faced with disagreement with the experts. This activity predicted how much influence the experts would have. By comparing the measures in this new study with the previous findings, they were able to show that grey matter volume in the lateral orbitofrontal cortex also predicted how individuals responded when the critics disagreed with their opinions. These findings suggest that the brain region is particularly tuned to recognising cues of social conflict, such as when someone disapproves of a choice, which may prompt the subject to update their opinions accordingly.

Study leader Professor Chris Frith says: "The ability to adapt to others and align ourselves with them is an important social skill. However, at what level is this skill implemented in the brain? At a software (information processing) or hardware (structural) level? Our results show that social conformation is, at least in part, hard-wired in the structure of the brain."

Dr Daniel Campbell-Meiklejohn, first author of the study, explains the implications of their findings: "This opens a new chapter on the social consequences of brain atrophy and brain development. People with damage to this region often display changes of personality and social interaction. This finding suggests that perhaps we should look at how these individuals learn what is important from the expressed preferences of others."

Craig Brierley | EurekAlert!
Further information:

Further reports about: brain region frontal cortex nerve cell social pressures

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>