Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify human monoclonal antibodies effective against bird and seasonal flu viruses

24.02.2009
Antibodies bind to conserved region of the virus and may offer cross-protection against previous pandemic types and bird and seasonal flu

Researchers at the Dana-Farber Cancer Institute (Dana-Farber), Burnham Institute for Medical Research (Burnham) and the Centers for Disease Control and Prevention (CDC) have reported the identification of human monoclonal antibodies (mAb) that neutralize an unprecedented range of influenza A viruses, including avian influenza A (H5N1) virus, previous pandemic influenza viruses, and some seasonal influenza viruses.

These antibodies have the potential for use in combination with other treatments to prevent or treat certain types of avian and seasonal flu. The study was published online on February 22 in Nature Structural and Molecular Biology.

The antibodies identified by the team of scientists neutralize a broad range of influenza A subtypes because they bind to the highly conserved stem region of H5 type hemaglutinin (HA). Binding to the stem prevents a conformational change in the protein that is necessary for viral entry into the host cell, thereby preventing further infection of host cells and the rise of escape mutants.

"The head portion of hemaglutinin is highly mutable, leading to the rise of forms of the virus that can evade neutralizing antibodies," said Robert Liddington, Ph.D., professor and director, Infectious and Inflammatory Disease Center at Burnham and one of the investigators on the study. "However, the stem region of hemaglutinin is highly conserved because it undergoes a dramatic conformational change to allow entry of viral RNA into the host cell. It's very difficult to get a mutation that doesn't destroy that function, which explains why we aren't seeing escape mutants and why these antibodies neutralize such a variety of strains of influenza."

While more costly to produce than existing influenza drugs, therapeutic antibodies can be readily manufactured and stockpiled. In the event of a pandemic, the antibodies could be used in combination with antiviral therapies to contain the outbreak until a vaccine became available. The production of a new influenza vaccine takes six to nine months using conventional methods.

"There are clear settings where human monoclonal antibodies can be used strategically for both the prevention and early treatment of influenza infection and disease," said Wayne A. Marasco, M.D., Ph.D., associate professor of medicine at Dana-Farber and Harvard Medical School. "At-risk individuals, such as first responders and medical personnel, exposed family members and coworkers and patients who cannot make antibodies because of pre-existing medical conditions or advanced age, could all benefit from this new type of therapy."

In the study, the team of scientists used a human antibody phage display library to identify 10 mAb that bind to the stem of H5 type HA, the influenza protein responsible for viral entry into the host cell. The scientists determined the X-ray crystal structure of the mAb bound to the H5N1 HA, which showed that the heavy chain of the mAb inserts into a highly conserved pocket in the HA stem, inhibiting the conformational change required for membrane fusion and viral entry into the cell.

The scientists further showed that an unprecedented number of different types of bird flu and seasonal influenza viruses were inhibited and the mAb protected mice that were exposed to H5N1 virus. "Our human monoclonal antibody protected mice from the lethal H5N1 virus even when injected three days after infection. This is good news, but many antibodies can do this. What surprised us is that the same antibody protected mice from a lethal infection with a very different virus such as the H1N1 subtype that causes seasonal human infections; this is really remarkable," said Dr. Ruben Donis, chief of the Molecular Virology and Vaccines Branch at CDC.

Vaccines consisting of attenuated or killed virus do not typically stimulate antibodies against the stem, perhaps because it is less accessible than the head region. In this study, the scientists used recombinant purified protein, not virus, so the antigenic part of the virus recognized by the antibodies was fully exposed.

Seasonal influenza occurs each year, causing mild to severe illness. Worldwide, more than 250,000 deaths from seasonal influenza occur annually. The best protection from seasonal influenza is yearly vaccination.

Influenza pandemics are worldwide outbreaks of disease that occur when a new influenza virus emerges for which people have little or no immunity. The disease spreads easily person-to-person, causes serious illness, and can spread across the country and around the world in a very short time. Health professionals are concerned that the continued spread of a highly pathogenic avian influenza A (H5N1) virus across eastern Asia and other countries represents a significant threat to human health. While vaccines can control influenza, they are not always effective because the vaccine must be updated each year. Vaccines against H5N1 in development have shown promise, but none has been reported to elicit a broad response in humans that would cover a broad range of different H5N1 virus strains. Antiviral medications, including the neuraminidase inhibitor oseltamivir (Tamiflu ®), is the primary treatment method, but has limited effectiveness if administered more than 24-48 hours after symptom onset.

Josh Baxt | EurekAlert!
Further information:
http://www.burnham.org
http://www.dana-farber.org

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>