Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify genetic mechanism that contributed to Irish Famine

07.02.2013
Research by UC Riverside plant pathologists is the first to show that RNA silencing regulates plant defense against the notorious Phytophthora pathogens

When a pathogen attacks a plant, infection usually follows after the plant's immune system is compromised. A team of researchers at the University of California, Riverside focused on Phytophthora, the pathogen that triggered the Irish Famine of the 19th century by infecting potato plants, and deciphered how it succeeded in crippling the plant's immune system.

The genus Phytophthora contains many notorious pathogens of crops. Phytophthora pathogens cause worldwide losses of more than $6 billion each year on potato (Phytophthora infestans) and about $2 billion each year on soybean (Phytophthora sojae).

The researchers, led by Wenbo Ma, an associate professor of plant pathology and microbiology, focused their attention on a class of essential virulence proteins produced by a broad range of pathogens, including Phytophthora, called "effectors." The effectors are delivered to, and function only in, the cells of the host plants the pathogens attack. The researchers found that Phytophthora effectors blocked the RNA silencing pathways in their host plants (such as potato, tomato, and soybean), resulting first in a suppression of host immunity and thereafter in an increase in the plants' susceptibility to disease.

"Phytophthora has evolved a way to break the immunity of its host plants," Ma explained. "Its effectors are the first example of proteins produced by eukaryotic pathogens — nucleated single- or multi-cellular organisms — that promote infection by suppressing the host RNA silencing process. Our work shows that RNA silencing suppression is a common strategy used by a variety of pathogens — viruses, bacteria and Phytophthora — to cause disease, and shows, too, that RNA silencing is an important battleground during infection by pathogens across kingdoms."

Study results appeared online Feb. 3 in Nature Genetics.

What is RNA silencing and what is its significance? RNA is made from DNA. Many RNAs are used to make proteins. However, these RNAs can be regulated by "small RNA" (snippets of RNA) that bind to them. The binding leads to suppression of gene expression. Known as RNA gene silencing, this suppression plays an important role in regulating plant growth and development. When RNA silencing is impaired by effectors, the plant is more susceptible to disease.

Basic RNA silencing processes are conserved in plant and mammalian systems. They serve as a major defense mechanism against viruses in plants and invertebrates. RNA silencing has also been implicated in anti-bacterial plant defense. The discovery by Ma's lab is the first to show that RNA silencing regulates plant defense against eukaryotic pathogens.

"Phytophthora effectors have a motif or signature — a specific protein code — that allows the proteins to be delivered into host cells," Ma said. "A similar motif is found in effectors of animal parasites, such as the malaria pathogen Plasmodium, suggesting an evolutionarily conserved means for delivering effectors that affect host immunity."

Next, her lab will work on extensively screening other pathogens and identifying their effectors' direct targets so that novel control strategies can be developed to manage the diseases the pathogens cause.

Ma was joined in the study by UC Riverside's Yongli Qiao, Lin Liu, Cristina Flores, James Wong, Jinxia Shi, Xianbing Wang, Xigang Liu, Qijun Xiang, Shushu Jiang, Howard S. Judelson and Xuemei Chen; Fuchun Zhang at Xinjiang University, China; and Qin Xiong and Yuanchao Wang at Nanjing Agricultural University, China.

The research was supported by a National Science Foundation grant to Ma and grants from the U.S. Department of Agriculture (USDA) to Judelson and Chen.

In 2011, UCR received a $9 million USDA grant to research late blight, caused by Phytophthora infestans, that mainly attacks potatoes and tomatoes. Last year, UCR released avocado rootstocks that can help control Phytophthora root rot, a disease that has eliminated commercial avocado production in many areas of the world.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>