Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists identify genetic mechanism that contributed to Irish Famine

Research by UC Riverside plant pathologists is the first to show that RNA silencing regulates plant defense against the notorious Phytophthora pathogens

When a pathogen attacks a plant, infection usually follows after the plant's immune system is compromised. A team of researchers at the University of California, Riverside focused on Phytophthora, the pathogen that triggered the Irish Famine of the 19th century by infecting potato plants, and deciphered how it succeeded in crippling the plant's immune system.

The genus Phytophthora contains many notorious pathogens of crops. Phytophthora pathogens cause worldwide losses of more than $6 billion each year on potato (Phytophthora infestans) and about $2 billion each year on soybean (Phytophthora sojae).

The researchers, led by Wenbo Ma, an associate professor of plant pathology and microbiology, focused their attention on a class of essential virulence proteins produced by a broad range of pathogens, including Phytophthora, called "effectors." The effectors are delivered to, and function only in, the cells of the host plants the pathogens attack. The researchers found that Phytophthora effectors blocked the RNA silencing pathways in their host plants (such as potato, tomato, and soybean), resulting first in a suppression of host immunity and thereafter in an increase in the plants' susceptibility to disease.

"Phytophthora has evolved a way to break the immunity of its host plants," Ma explained. "Its effectors are the first example of proteins produced by eukaryotic pathogens — nucleated single- or multi-cellular organisms — that promote infection by suppressing the host RNA silencing process. Our work shows that RNA silencing suppression is a common strategy used by a variety of pathogens — viruses, bacteria and Phytophthora — to cause disease, and shows, too, that RNA silencing is an important battleground during infection by pathogens across kingdoms."

Study results appeared online Feb. 3 in Nature Genetics.

What is RNA silencing and what is its significance? RNA is made from DNA. Many RNAs are used to make proteins. However, these RNAs can be regulated by "small RNA" (snippets of RNA) that bind to them. The binding leads to suppression of gene expression. Known as RNA gene silencing, this suppression plays an important role in regulating plant growth and development. When RNA silencing is impaired by effectors, the plant is more susceptible to disease.

Basic RNA silencing processes are conserved in plant and mammalian systems. They serve as a major defense mechanism against viruses in plants and invertebrates. RNA silencing has also been implicated in anti-bacterial plant defense. The discovery by Ma's lab is the first to show that RNA silencing regulates plant defense against eukaryotic pathogens.

"Phytophthora effectors have a motif or signature — a specific protein code — that allows the proteins to be delivered into host cells," Ma said. "A similar motif is found in effectors of animal parasites, such as the malaria pathogen Plasmodium, suggesting an evolutionarily conserved means for delivering effectors that affect host immunity."

Next, her lab will work on extensively screening other pathogens and identifying their effectors' direct targets so that novel control strategies can be developed to manage the diseases the pathogens cause.

Ma was joined in the study by UC Riverside's Yongli Qiao, Lin Liu, Cristina Flores, James Wong, Jinxia Shi, Xianbing Wang, Xigang Liu, Qijun Xiang, Shushu Jiang, Howard S. Judelson and Xuemei Chen; Fuchun Zhang at Xinjiang University, China; and Qin Xiong and Yuanchao Wang at Nanjing Agricultural University, China.

The research was supported by a National Science Foundation grant to Ma and grants from the U.S. Department of Agriculture (USDA) to Judelson and Chen.

In 2011, UCR received a $9 million USDA grant to research late blight, caused by Phytophthora infestans, that mainly attacks potatoes and tomatoes. Last year, UCR released avocado rootstocks that can help control Phytophthora root rot, a disease that has eliminated commercial avocado production in many areas of the world.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Two decades of training students and experts in tracking infectious disease
27.11.2015 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Increased carbon dioxide enhances plankton growth, opposite of what was expected
27.11.2015 | Bigelow Laboratory for Ocean Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>