Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify genes capable of regulating stem cell function

18.09.2008
Animal model provides insight on pathways used for adult tissue maintenance and regeneration; system for studying relationship between stem cells and cancer
Scientists from The Forsyth Institute, Boston, MA, and the Howard Hughes Medical Institute at the University of Utah School of Medicine have developed a new system in which to study known mammalian adult stem cell disorders.

This research, conducted with the flatworm planaria, highlights the genetic similarity between these invertebrates and mammals in the mechanisms by which stem cell regulatory pathways are used during adult tissue maintenance and regeneration.

It is expected that this work may help scientists pursue pharmacological, genetic, and physiological approaches to develop potential therapeutic targets that could repair or prevent abnormal stem cell growth which can lead to cancer.

In recent years, planarians have been recognized as a powerful model system in which to molecularly dissect conserved stem cell regulatory mechanisms in vivo. This research reveals that planaria are also a great model in which to study the molecular relationship between stem cells and cancer. The gene characterized in this study (PTEN) is one of the most commonly mutated genes in human cancers. As in human beings, genetic disturbance of the gene in planarians led to mis-regulation of cell proliferation resulting in cancer-like characteristics. These results indicate that some of the pattern control mechanisms that enable regeneration of complex structures may go awry in cancer.

Abnormal stem cell proliferation in planarians is induced by genetic manipulation of conserved cellular signaling pathways. These abnormal cells can be specifically targeted without disturbing normal stem cell functions that support adult tissue homeostasis and regeneration. Importantly, this type of analysis could not be achieved in more traditional adult invertebrate model systems such as the fruit fly Drosophila and the nematode C. elegans. This research will be published in the journal Disease Models & Mechanisms available online on August 30. According to the paper's lead author, Dr. Néstor J. Oviedo, an Assistant Research Investigator in the Forsyth Center for Regenerative and Developmental Biology, this work provides new opportunities to expand knowledge of this regulatory molecule and the role it plays in cancer and tissue regeneration. "Our findings demonstrate that important signaling pathways regulating adult stem cell proliferation, migration and differentiation are evolutionarily and functionally conserved between planarians and mammals. Planarians are poised to not only advance the understanding of how diverse adult tissues are functionally maintained in vivo, but also will enhance our capabilities to identify, prevent, and remediate abnormal stem cell proliferation." Summary of Study

The scientists have identified two genes, Smed-PTEN-1 and Smed-PTEN-2, capable of regulating stem cell function in the planarian Schmidtea mediterranea. Both genes encode proteins homologous to the mammalian tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Inactivation of Smed-PTEN-1and -2 by RNA interference (RNAi) in planarians disrupts regeneration, and leads to abnormal outgrowths in both cut and uncut animals followed soon after by death (lysis). The resulting phenotype is characterized by hyperproliferation of neoblasts (planarian stem cells), tissue disorganization and a significant accumulation of postmitotic cells with impaired differentiation capacity. Further analyses revealed that rapamycin selectively prevented such accumulation without affecting the normal neoblast proliferation associated with physiological turnover and regeneration. In animals in which PTEN function is abrogated, the HHMI/University of Utah and Forsyth researchers also detected a significant increase in the number of cells expressing the planarian Akt gene homolog (Smed-Akt). However, functional abrogation of Smed-Akt in Smed-PTENRNAi-treated animals does not prevent cell overproliferation and lethality, indicating that functional abrogation of Smed-PTEN is sufficient to induce abnormal outgrowths. Altogether, the data reveal roles for PTEN in the regulation of planarian stem cells that are strikingly conserved to mammalian models. In addition, the results implicate this protein in the control of stem cell maintenance during the regeneration of complex structures in planarians.

The PTEN molecules were originally identified and characterized in the laboratory of Dr. Alejandro Sanchez Alvarado, HHMI investigator and Professor of Neurobiology and Anatomy at the University of Utah School of Medicine. Dr. Sánchez Alvarado's is the paper's senior author. His laboratory is engaged in the identification of the molecular and cellular basis of animal regeneration. His laboratory's work on planarians has led to the establishment of this organism as an important model system to study stem cells, regeneration and tissue homeostasis.

The Forsyth research team is led by Michael Levin, Ph.D., Senior Member of the Staff in The Forsyth Institute and the Director of the Forsyth Center for Regenerative and Developmental Biology. Through experimental approaches and mathematical modeling, Dr. Levin and his group examine the processes governing large-scale pattern formation and biological information storage during animal embryogenesis. The lab investigates mechanisms of signaling between cells and tissues that allow a living system to reliably generate and maintain a complex morphology. The Levin team studies these processes in the context of embryonic development and regeneration, with a particular focus on the biophysics of cell behavior.

Jennifer Kelly | EurekAlert!
Further information:
http://www.forsyth.org
http://www.nsf.org
http://www.nigms.nih.gov/

Further reports about: Genetic PTEN Regeneration abnormal conserved function planaria planarian proliferation regulating

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>