Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify new gene that influences survival in ALS

27.08.2012
ALS discovery points to new pathways and potential treatment strategy

A team of scientists, including faculty at the University of Massachusetts Medical School (UMMS), have discovered a gene that influences survival time in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease).

The study, published today in Nature Medicine, describes how the loss of activity of a receptor called EphA4 substantially extends the lifespan of people with the disease. When coupled with a UMMS study published last month in Nature identifying a new ALS gene (profilin-1) that also works in conjunction with EphA4, these findings point to a new molecular pathway in neurons that is directly related to ALS susceptibility and severity.

"Taken together, these findings are particularly exciting because they suggest that suppression of EphA4 may be a new way to treat ALS," said Robert Brown, MD, DPhil, a co-author on the study and chair of neurology at UMass Medical School.

ALS is a progressive, neurodegenerative disorder affecting the motor neurons in the central nervous system. As motor neurons die, the brain's ability to send signals to the body's muscles is compromised. This leads to loss of voluntary muscle movement, paralysis and eventually respiratory failure. The cause of most cases of ALS is not known. Approximately 10 percent of cases are inherited. Though investigators at UMMS and elsewhere have identified several genes shown to cause inherited or familial ALS, almost 50 percent of these cases have an unknown genetic cause. There are no significant treatments for the disease.

Wim Robberecht, MD, PhD, lead investigator of the Nature Medicine study and a researcher at the University of Leuven in Belgium and the Vesalius Research Center, screened for genes in zebrafish that blunt the adverse effect of the ALS mutant gene SOD1. Through this process, his team identified EphA4 as an ALS modifier. Dr. Robberecht's team went on to show that when this gene is inactivated in mice with ALS, the mice live longer.

Dr. Robberecht then turned to UMass Medical School to confirm that turning off EphA4 in human ALS cells would slow the progression of the disease. Dr. Brown and his team identified two human ALS cases with mutations in the EphA4 gene which, like the zebrafish and the mice, had unusually long survival times. This suggests that blocking EphA4 in patients with ALS may be a potential therapeutic target in the future.

In an exciting, related development, a new ALS gene (profilin-1) identified last month by UMMS scientists works in conjunction with EphA4 in neurons to control outgrowth of motor nerve terminals. In effect, gene variants at both the top and the bottom of the same signaling pathway are shown to effect ALS progression. Together these discoveries highlight a new molecular pathway in neurons that is directly related to ALS susceptibility and severity and suggests that other components of the pathway may be implicated in ALS.

"It is exciting that these two studies identify the same pathway in ALS," said John Landers, PhD, associate professor of neurology and lead author of the PFN1 study. "Hopefully this discovery will accelerate efforts to finding a treatment for ALS."

The UMMS ALS research program is generously supported by the ALS Therapy Alliance (ATA), Project ALS, P2ALS, the Angel Fund and the National Institutes of Health. Over the last decade, the ATA, which is funded by CVS Pharmacy, has raised $30 million for ALS research, focusing on breakthrough studies that improve understanding and treatment of ALS.
About the University of Massachusetts Medical School

The University of Massachusetts Medical School has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $250 million in research funding annually, 80 percent of which comes from federal funding sources. The work of UMMS researcher Craig Mello, PhD, an investigator of the prestigious Howard Hughes Medical Institute (HHMI), and his colleague Andrew Fire, PhD, then of the Carnegie Institution of Washington, toward the discovery of RNA interference was awarded the 2006 Nobel Prize in Physiology or Medicine and has spawned a new and promising field of research, the global impact of which may prove astounding. UMMS is the academic partner of UMass Memorial Health Care, the largest health care provider in Central Massachusetts. For more information, visit www.umassmed.edu.

Forthcoming Nature Medicine Paper: Van Hoecke A, Schoonaert L, Lemmens R, Timmers M, Staats KA, Laird AS, Peeters E, Philips T, Goris A, Dubois B, Andersen P, Al-Chalabi A, Thijs V, Turnley AM, van Vught PW, Veldink JH, Van Den Bosch L, Gonzalez-Perez P, Van Damme P, Brown RH Jr, van den Berg LH, Robberecht W. Genetic screening in zebrafish identifies EphA4 of the ephrin axonal repellent system as a disease modifier of amyotrophic lateral sclerosis in rodent models and patients. In press, Nat Medicine.

Profilin1 Paper: Wu C-H, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, Piotrowska K, Lowe P, Koppers M, McKenna-Yasek D, Baron D, Kost E, Gonzalez-Perez P, Fox AD, Adams J, Taroni F, Tiloca C, Leclerc AL, Chafe SC, Mangroo D, Moore MJ, Zitzewitz J, Xu Z-S, van den Berg LH, Glass JD, Siciliano G, Cirulli ET, Goldstein DB, Salachas F, Meninger V, Rossoll W, Ratti A, Gellera C, Bosco DA, Bassell GJ, Silani V, Drory VE, Brown RH Jr., Landers JE. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature. 2012 Jul 15

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>