Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists identify new gene that influences survival in ALS

ALS discovery points to new pathways and potential treatment strategy

A team of scientists, including faculty at the University of Massachusetts Medical School (UMMS), have discovered a gene that influences survival time in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease).

The study, published today in Nature Medicine, describes how the loss of activity of a receptor called EphA4 substantially extends the lifespan of people with the disease. When coupled with a UMMS study published last month in Nature identifying a new ALS gene (profilin-1) that also works in conjunction with EphA4, these findings point to a new molecular pathway in neurons that is directly related to ALS susceptibility and severity.

"Taken together, these findings are particularly exciting because they suggest that suppression of EphA4 may be a new way to treat ALS," said Robert Brown, MD, DPhil, a co-author on the study and chair of neurology at UMass Medical School.

ALS is a progressive, neurodegenerative disorder affecting the motor neurons in the central nervous system. As motor neurons die, the brain's ability to send signals to the body's muscles is compromised. This leads to loss of voluntary muscle movement, paralysis and eventually respiratory failure. The cause of most cases of ALS is not known. Approximately 10 percent of cases are inherited. Though investigators at UMMS and elsewhere have identified several genes shown to cause inherited or familial ALS, almost 50 percent of these cases have an unknown genetic cause. There are no significant treatments for the disease.

Wim Robberecht, MD, PhD, lead investigator of the Nature Medicine study and a researcher at the University of Leuven in Belgium and the Vesalius Research Center, screened for genes in zebrafish that blunt the adverse effect of the ALS mutant gene SOD1. Through this process, his team identified EphA4 as an ALS modifier. Dr. Robberecht's team went on to show that when this gene is inactivated in mice with ALS, the mice live longer.

Dr. Robberecht then turned to UMass Medical School to confirm that turning off EphA4 in human ALS cells would slow the progression of the disease. Dr. Brown and his team identified two human ALS cases with mutations in the EphA4 gene which, like the zebrafish and the mice, had unusually long survival times. This suggests that blocking EphA4 in patients with ALS may be a potential therapeutic target in the future.

In an exciting, related development, a new ALS gene (profilin-1) identified last month by UMMS scientists works in conjunction with EphA4 in neurons to control outgrowth of motor nerve terminals. In effect, gene variants at both the top and the bottom of the same signaling pathway are shown to effect ALS progression. Together these discoveries highlight a new molecular pathway in neurons that is directly related to ALS susceptibility and severity and suggests that other components of the pathway may be implicated in ALS.

"It is exciting that these two studies identify the same pathway in ALS," said John Landers, PhD, associate professor of neurology and lead author of the PFN1 study. "Hopefully this discovery will accelerate efforts to finding a treatment for ALS."

The UMMS ALS research program is generously supported by the ALS Therapy Alliance (ATA), Project ALS, P2ALS, the Angel Fund and the National Institutes of Health. Over the last decade, the ATA, which is funded by CVS Pharmacy, has raised $30 million for ALS research, focusing on breakthrough studies that improve understanding and treatment of ALS.
About the University of Massachusetts Medical School

The University of Massachusetts Medical School has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $250 million in research funding annually, 80 percent of which comes from federal funding sources. The work of UMMS researcher Craig Mello, PhD, an investigator of the prestigious Howard Hughes Medical Institute (HHMI), and his colleague Andrew Fire, PhD, then of the Carnegie Institution of Washington, toward the discovery of RNA interference was awarded the 2006 Nobel Prize in Physiology or Medicine and has spawned a new and promising field of research, the global impact of which may prove astounding. UMMS is the academic partner of UMass Memorial Health Care, the largest health care provider in Central Massachusetts. For more information, visit

Forthcoming Nature Medicine Paper: Van Hoecke A, Schoonaert L, Lemmens R, Timmers M, Staats KA, Laird AS, Peeters E, Philips T, Goris A, Dubois B, Andersen P, Al-Chalabi A, Thijs V, Turnley AM, van Vught PW, Veldink JH, Van Den Bosch L, Gonzalez-Perez P, Van Damme P, Brown RH Jr, van den Berg LH, Robberecht W. Genetic screening in zebrafish identifies EphA4 of the ephrin axonal repellent system as a disease modifier of amyotrophic lateral sclerosis in rodent models and patients. In press, Nat Medicine.

Profilin1 Paper: Wu C-H, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, Piotrowska K, Lowe P, Koppers M, McKenna-Yasek D, Baron D, Kost E, Gonzalez-Perez P, Fox AD, Adams J, Taroni F, Tiloca C, Leclerc AL, Chafe SC, Mangroo D, Moore MJ, Zitzewitz J, Xu Z-S, van den Berg LH, Glass JD, Siciliano G, Cirulli ET, Goldstein DB, Salachas F, Meninger V, Rossoll W, Ratti A, Gellera C, Bosco DA, Bassell GJ, Silani V, Drory VE, Brown RH Jr., Landers JE. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature. 2012 Jul 15

Jim Fessenden | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Sweetening neurotransmitter receptors and other neuronal proteins
28.10.2016 | Max-Planck-Institut für Hirnforschung

nachricht A new look at thyroid diseases
28.10.2016 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>