Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists identify gene that is consistently altered in obese individuals

Food and environment can chemically alter your gene function and scientists have identified a gene that is consistently altered in obesity.

The gene LY86 was among a group of 100 genes identified as likely contributors to obesity through genome-wide association studies comparing the DNA of thousands of obese and lean individuals, said Dr. Shaoyong Su, genetic epidemiologist at the Medical College of Georgia at Georgia Regents University.

Su looked at progressively larger groups of obese versus lean individuals and found LY86 consistently and highly chemically altered, or methylated, in the obese individuals. "The association is solid; the methylation of this gene is important in obesity," Su said.

It's known that obesity is highly inheritable; that if parents are obese, children are at higher risk. However environment, including high-fat foods and chemical exposure, can put you at risk as well, said Su. Methylation is one way the body adjusts to its environment.

He received the 2013 Scott Grundy Fellowship Award for Excellence in Metabolism Research for his studies and is presenting the work this week during the Epidemiology and Prevention/Nutrition, Physical Activity and Metabolism Scientific Session of the American Heart Association in New Orleans.

Previously LY86 had been known as an inflammation gene and Su's studies show, in fact, it may be contributing to more than just obesity. He found high methylation of LY86 also was associated with increased inflammation – a risk factor for a variety of maladies such as heart disease and cancer – as well as insulin resistance, a cause of diabetes. This association also held up among a group of about 703 subjects that, like the general public, included obese, lean and average-weight individuals.

Now he wants to go back to the animal model to see whether methylation changes gene expression up or down in fat mice as well as fat, pregnant mice and their offspring. He believes that a lot of methylation starts in the womb and there are unfortunate real-life circumstances that support that theory.

For example, in the Dutch famine of 1944 near the end of World War II, babies born to starving mothers experienced DNA methylation that made them better able to survive such depravation, but in the more plentiful environment in which they grew up, put them at increased risk for cardiovascular disease as well as diabetes, obesity and other health problems.

He's already moving forward with more human studies as well, looking at a new group of lean and obese individuals, analyzing their DNA expression to see if increased methylation of LY86 means the gene is expressed more or less. Generally, higher methylation is thought to translate to lower gene expression.

He also wants to pin down whether methylation results from things like a high-fat diet, unfortunate genetics or both. These types of details may help explain why some individuals grow obese with a bad diet and little physical activity while others don't, Su said. It also may mean that positive environmental change, such as a better diet or more physical activity, can reverse at least some of the methylation. People may not get thin, for example, but they may reduce their risk for obesity-related disease, Su said.

LY86's clear importance in obesity emerged by first merging the gene list from the genome wide association studies with a genome wide methylation database on a small cohort of seven obese and seven lean individuals. The finding of increased methylation held up in subsequent groups of 46 obese/46 leans, 230 obese/413 leans as well as the general population panel of 703 at the GRU Institute of Public and Preventive Health. The research was supported by the National Institutes of Health.

Toni Baker | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>