Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists identify FLT3 gene as a valid therapeutic target in acute myeloid leukemia

Use of new gene-sequencing technology rapidly identifies mutations that lead to drug resistance
Through a groundbreaking new gene sequencing technology, researchers have demonstrated that the gene FLT3 is a valid therapeutic target in Acute Myeloid Leukemia, AML, one of the most common types of leukemia.

The technique, developed by Pacific Biosciences, allows for the rapid and comprehensive detection of gene mutations in patients with AML. The findings, published online April 15 in Nature, are a result of collaboration among scientists at the University of California, San Francisco, Pacific Biosciences and Mount Sinai School of Medicine. The discovery may help lead to the development of new drugs to treat AML.

"By sequencing the FLT3 gene in AML patients who have relapsed on therapy targeted against FLT3, we have determined that FLT3 is a valid therapeutic target, and this will certainly help us better understand the physiology of this type of leukemia in order to help us develop new therapies in the future," said Andrew Kasarskis, PhD, who performed the research with colleagues at Pacific Biosciences prior to becoming Vice Chair of the Department of Genetics and Genomic Sciences at Mount Sinai School of Medicine. "In addition, sequencing hundreds of single molecules of FLT3 allowed us to see drug resistance mutations at low frequency. This increased ability to see resistance will let us identify the problem of the resistance sooner in a patient's clinical course and help us take steps to address it."

Historically, DNA sequencing of individual molecules in a mixture has been difficult and time-consuming to achieve. However, Pacific Bioscience's single molecule real-time sequencer, the PacBio® RS, identified mutations in the sequence reads obtained in a single run even at low levels, on the order of 1 to 3 percent of total sequence reads.

"This finding may have great utility for drug development, as we can begin to test drugs or a combination of drugs in patients with AML who have relapsed," added Kasarskis, who is also Co-Director of the Institute for Genomics and Multiscale Biology at Mount Sinai. "Furthermore, if we can find out when the drug resistant mutations occur exactly, clinicians may be able to prescribe another drug more quickly."

In this era of personalized medicine, many drugs have been developed to target the mutations in genes that cause cancer - in an effort to attack the cancer with minimal side effects. Oftentimes, patients develop resistance to drugs and new therapeutic strategies must be applied, so physicians use a second line drug, or combination of drugs, in an effort to target the new gene mutations that develop. Knowing exactly when this mutation and subsequent resistance occurs may be very helpful in identifying when new therapies may be prescribed.

In this study, researchers worked with eight leukemia patients who had participated in a clinical trial involving a compound known as AC220, the first clinically-active FLT3 inhibitor. All eight patients relapsed after first achieving deep remissions with AC220. The relapse indicated that patients had developed a resistance to the drug.

AML is characterized by the rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the production of normal blood cells. Treatment includes chemotherapy in order to eliminate leukemic cells and stem cell transplantation. However, through the identification of a valid therapeutic target (FLT3), scientists can begin to develop new and more effective therapies in the future.

"Mount Sinai is deeply committed to addressing the problem of drug resistance in all diseases including cancer and infections with viruses or bacteria," said Kasarskis. "This study certainly tries to address the issue, and will look forward to making continued progress in this area."

Study authors include scientists from University of California, Berkeley; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Abramson Cancer Center of the University of Pennsylvania and Ambit Biosciences in San Diego.

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of the leading medical schools in the United States. The Medical School is noted for innovation in education, biomedical research, clinical care delivery, and local and global community service. It has more than 3,400 faculty in 32 departments and 14 research institutes, and ranks among the top 20 medical schools both in National Institutes of Health (NIH) funding and by U.S. News & World Report.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation's oldest, largest and most-respected voluntary hospitals. In 2011, U.S. News & World Report ranked The Mount Sinai Hospital 16th on its elite Honor Roll of the nation's top hospitals based on reputation, safety, and other patient-care factors. Of the top 20 hospitals in the United States, Mount Sinai is one of 12 integrated academic medical centers whose medical school ranks among the top 20 in NIH funding and U.S. News & World Report and whose hospital is on the U.S. News & World Report Honor Roll. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 560,000 outpatient visits took place.

For more information, visit

Find Mount Sinai on:
Twitter @mountsinainyc

Mount Sinai Press Office | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>