Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify First Nutrient Sensor in Key Growth-Regulating Metabolic Pathway

08.01.2015

Known as much for its complexity as its vital role in regulating cellular and organismal growth, the mechanistic target of rapamycin complex 1 (mTORC1) pathway has seemingly been acting in mysterious ways.

Through a variety of mechanistic interactions, mTORC1 interprets cues in the cellular environment, including the availability of nutrients, and signals the organism to act accordingly. mTORC1 is apt to trigger growth during times of abundance and dial back metabolism when food is scarce.

Owing to years of intense scrutiny in the lab of Whitehead Institute Member David Sabatini, the key players of this pathway—whose deregulation is associated with diseases ranging from diabetes to cancer to epilepsy—have gradually been brought to light. Yet, one essential question remained unanswered: How exactly does mTORC1 actually detect the presence of nutrients?

Now, it seems, scientists in Sabatini’s lab have at least a partial answer, describing for the first time a protein that appears to sense the amino acid arginine. The discovery of this transmembrane protein, known as SLC38A9, is reported this week in the journal Science.

“No one doubts that this is an important pathway, with implications for aging, cancer, and diabetes, and we had figured out the core machinery of the pathway,” says Sabatini. “But the mystery has been what are the sensors? Now we’ve found what is likely the first nutrient sensor. This is what connects that core machinery to the world around it.”

The finding suggests a model in which mTORC1, located at the surface of cellular components known as lysosomes, receives “go/no-go” signals from a family of enzymes dubbed Rag GTPases. It had been known that the Rags convey information about nutritional status to mTORC1, but it wasn’t clear how the Rags came by this information. Through a series of experiments, researchers found that SLC38A9 is capable of transporting and directly interacting with amino acids, the building blocks of proteins.

Further, they found that in cells overexpressing SLC38A9, mTORC1 signaling is activated even in the absence of amino acids. On the flipside, they found mTORC1 activation defective in cells engineered to lack expression of SLC38A9. Taken together, such compelling evidence points to SLC38A9 as an amino acid sensor, tipping off the Rags to the availability of nutrients.

“It’s like a relay race and this protein is what starts the race,” says Zhi-Yang Tsun, a graduate student in Sabatini’s lab and co-first author of the Science paper. “We’ve been looking for a long time for a molecule like this. It has all the properties consistent with a sensor.”

As new components of the pathway are identified and their roles elucidated, the number of potential targets that could be manipulated therapeutically increases. Historically, drug development activities in this space have focused on blocking mTORC1 activation, in part because hyperactivation of the pathway can lead to aberrant growth seen in cancer or metabolic abnormalities associated with diabetes. Intriguingly, because SLC38A9 activates the pathway, it may represent a target for clinical situations in which growth stimulation is desirable.

“It would be interesting to have to have small molecular handles to perturb the pathway, turning it on or off,” says Shuyu Wang, another Sabatini lab graduate student and co-first author of the Science paper. “In this case, one could think about situations where you would want to increase protein synthesis, perhaps to treat muscle atrophy and disease-related weight loss.”

Although the discovery of the first nutrient sensor in this pathway represents an important advance, the researchers know much work lies ahead. SLC38A9’s specificity for arginine suggests that many more such sensors—for other amino acids and glucose, for example—interact either directly or indirectly with mTORC1. Identifying them will thus remain a focus of the lab for years to come.

This work was supported by the National Institutes of Health (grants R01 CA103866 and AI47389), the United States Department of Defense (grant W81XWH-07-0448), the Howard Hughes Medical Institute, a National Defense Science and Engineering Fellowship, a National Science Foundation Graduate Research Fellowship, an American Cancer Society - Ellison Foundation Postdoctoral Fellowship, and a German Academic Exchange Service/DAAD Fellowship.

Written by Matt Fearer

* * *

David Sabatini's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute investigator and a professor of biology at Massachusetts Institute of Technology.

* * *

Full Citation:

“Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1”

Science, January 7, 2015

Shuyu Wang (1,2,3,4), Zhi-Yang Tsun (1,2,3,4), Rachel Wolfson (1,2,3,4), Kuang Shen (1,2,3,4), Gregory A. Wyant (1,2,3,4), Molly E. Plovanich (6), Elizabeth D. Yuan (1,2,3,4), Tony D. Jones (1,2,3,4), Lynne Chantranupong (1,2,3,4), William Comb (1,2,3,4), Tim Wang (1,2,3,4), Liron Bar-Peled (1,2,3,4)*, Roberto Zoncu (1,2,3,4)**, Christoph Straub (5), Choah Kim (1,2,3,4), Jiwon Park (1,2,3,4), Bernardo L. Sabatini (5), and David M. Sabatini (1,2,3,4)

1. Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA.

2. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

3. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

4. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge MA 02142, USA.

5. Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.

6. Harvard Medical School, 260 Longwood Avenue, Boston, MA 02115, USA.

* Present address: Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA

** Present address: Department of Molecular and Cell Biology, University of California
Berkeley, Berkeley, CA 94720, USA

Matt Fearer | newswise
Further information:
http://www.wi.mit.edu

Further reports about: Biomedical Cambridge Harvard Sabatini Technology amino amino acid mTORC1 pathway

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>