Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify possible cause of endometriosis

05.08.2008
Scientists at the University of Liverpool have identified an enzyme that could be responsible for a condition called endometriosis – the most common cause of pelvic pain in women.

Endometriosis is a condition whereby patches of the inner lining of the womb appear in parts of the body other than the womb cavity. It can cause severe pain and affects approximately 15% of women of reproductive age. Endometriosis is also associated with infertility, with 50% of infertile women affected by the condition.

Researchers discovered that an enzyme, called telomerase, is released by cells in the inner lining of the womb during the latter stages of the menstrual cycle in women who are affected by endometriosis. Telomerase is not commonly found in the cells that make up the body, but is uniquely found in the inner lining of the womb and in some special cells, such as sperm and egg cells. The enzyme is also found in cancer cells and is thought to be responsible for replicating DNA sequences during cell division in chromosomes.

Dr Dharani Hapangama, from the University’s Department of Reproductive and Developmental Medicine, explains: “Endometriosis occurs when cells of the inner lining of the womb are found growing outside of the uterus. At the time of a woman’s menstruation cycle these cells, called endometrial cells, are shed and can be expelled into the abdominal cavity. If these cells continue to live and are implanted in the pelvis and abdomen it can cause severe pain and in serious cases can lead to infertility.

“We found the telomere – a region at the end of all chromosomes that prevents the chromosome destroying itself during cell division – is abnormally long in women with endometriosis. During menstruation telomeres normally shorten in length with each cycle of cell division until they reach a certain length at which they can no longer divide. An enzyme called telomerase can extend the length of the telomeres so that they can continue to divide and this can happen in some special cells such as sperm and egg cells, but not normally in cells that make up the organs of the body.

“Our research shows, however, that cells in the lining of the womb are unique in that they can express this enzyme in the early stages of the menstrual cycle when cell division is important, but not during the latter stages when implantation of the fertilised embryo becomes a priority.

“Women who have endometriosis express this enzyme in both the early and late stages of the menstrual cycle which means that the cells will continue to divide and lose their ‘focus’ in supporting the establishment of a pregnancy. As a result the lining of the womb may be more hostile to an early pregnancy, and the cells that are shed at this late stage in the menstrual cycle may be more ‘aggressive’ and more able to survive and implant outside the uterus, causing pain in the pelvic or abdomen area.”

The research, published in Human Reproduction, will help scientists develop new techniques for diagnosing and treating the condition.

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk
http://www.liv.ac.uk/newsroom

Further reports about: Chromosome Telomere endometriosis enzyme menstrual

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>