Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Critical Protein Complex in Formation of Cell Cilia

21.08.2008
An international team led by NYU Cancer Institute have identified a protein complex that regulates the formation of cilia, which are found on virtually all mature human cells and are essential to normal cell function.

The new report, published this week by Developmental Cell and selected as the featured publication of the open-access online edition, describes how three proteins work together to regulate the formation of primary cilia.

The study led by Brian Dynlacht, Ph.D., professor of pathology and director of NYU Cancer Institute Genomics Facility, investigates these antenna-like structures, once thought to be vestigial remnants of cell evolution, which have recently emerged as a focal point of research in developmental cell biology.

“We are trying to understand the regulation of processes that are fundamental to normal cell development and health in humans,” said William Y. Tsang, Ph.D., of the NYU School of Medicine and NYU Cancer Institute, and first author of the paper. “Defective cilia are implicated in a wide range of serious illnesses such as polycystic kidney disease, retinal degeneration, and neurological disorders. Inappropriate activation of signaling molecules that normally reside at the primary cilium, may lead to certain cancers.”

At the center of the process lies the protein CEP290, which normally promotes primary cilia formation in mature cells. Dr. Tsang and his colleagues discovered that a second protein, CP110, normally suppresses the function of CEP290 until cells are fully mature. At that point, CP110 is destroyed, freeing CEP290 to interact with a third protein, Rab8a, to promote cilia formation on the surface of the mature cell.

The team’s findings may help to identify potential targets for future drug design.

“Ciliogenesis is a fundamental process. These structures are found in almost every type of human cell you can imagine,” Dr. Tsang said. “If we can ever design drugs that will restore the formation and function of cilia even in the presence of CEP290 mutations, then that would be one way to cure the defects that lead to ciliary diseases.”

Research so far has been using in vitro human cell lines. However, team members from the University of Michigan and National Eye Institute have developed a mouse model with a CEP290 mutation implicated in retinal degeneration, and the NYU group is planning a study of human CEP290 mutations to see if they can correlate genotypes to their expression in specific ciliary diseases.

The authors of this study are NYU Cancer Institute scientists William Y. Tsang and Brian David Dynlacht; Carine Bossard (Centre for Genomic Regulation, Barcelona); Hemant Khanna (Department of Ophthalmology and Visual Sciences, University of Michigan); Johan Peränen (Institute of Biotechnology, Program in Cellular Biotechnology, University of Helsinki), Anand Swaroop (Department of Ophthalmology and Visual Sciences, University of Michigan / National Eye Institute, Neurobiology Neurodegeneration & Repair Laboratory, Bethesda, MD); and Vivek Malhotra (Centre for Genomic Regulation, Barcelona).

The complete article is available at: http://www.developmentalcell.com/content/article/fulltext?uid=PIIS1534580708002839

Jennifer Berman | Newswise Science News
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>