Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Critical Genes for Down Syndrome

19.07.2010
Down syndrome is a well known cause of mental retardation and other medical problems, including early onset of Alzheimer disease. It has long been known that Down syndrome is associated with an individual having an additional copy of chromosome 21. Research findings reported in the July 18 advanced online publication of Nature Neuroscience have narrowed down the critical genetic elements responsible for some aspects of Down syndrome.

A team of scientists from the Uniformed Services University of the Health Sciences (USU) and Children’s National Medical Center (CNMC), led by Zygmunt Galdzicki, Ph.D., associate professor of Anatomy, Physiology and Genetics, USU, and Tarik F. Haydar, Ph.D., CNMC, now associate professor, Department of Anatomy and Neurobiology, Boston University School of Medicine, and corresponding author on the study), were able to identify Olig1 and Olig2 as two genes specific to the critical region of chromosome 21 associated with Down syndrome by using a specifically-engineered modification of the golden standard Down syndrome mouse model, Ts65Dn.

Previous studies including those by co-author Tyler Best, Ph.D., while a graduate student at USU, suggested that inhibitory activity is stronger in the Ts65Dn brain. This led researchers at USU and Children’s to hypothesize that genes controlling the inhibitory tone of the brain contribute to the cognitive changes associated with Down syndrome. By manipulating Olig1 and Olig2, genes present on the extra chromosome 21, the researchers were able to normalize key aspects of the inhibitory tone in brain regions involved in learning and memory. Thus, the balance of excitatory to inhibitory neurons is critically regulated by extra copies of these genes and they can drastically modify neurological development in Down syndrome.

“The results of this study demonstrate the critical effects of Olig1 and Olig2 on brain development and, in particular, on inhibitory networks in the brain,” said Dr. Galdzicki. “However, it is likely that additional genes are also involved in the effect. We hope the findings will lead to better strategies for early intervention, even during the pregnancy, to reduce neurological consequences of Down syndrome.

“This study again highlights that research on Down syndrome can provide us with new insight into the mechanisms that regulate brain growth and may help with better understanding other neurodevelopmental disorders such as autism,” he said. “These findings show the need to do more human studies and also suggest that Olig1 and Olig2 inhibitors may have a potential therapeutic role for Down syndrome individuals.”

The Uniformed Services University of the Health Sciences, located in Bethesda, Maryland, on the grounds of the National Naval Medical Center, is a traditional U.S. academic health center with a unique emphasis on educating the next generation of health care providers and researchers in military medicine, tropical diseases, humanitarian assistance, as well as responses to disasters and other public health emergencies. USU’s nationally ranked military and civilian faculty conduct cutting edge research in the biomedical sciences and in areas specific to the DoD health care mission.

Kenneth Frager | Newswise Science News
Further information:
http://www.usuhs.mil

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>