Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists identify cholesterol-regulating genes

EMBL discovery may help fight major cause of heart disease

Scientists at the European Molecular Biology Laboratory (EMBL) and the University of Heidelberg, Germany, have come a step closer to understanding how cholesterol levels are regulated.

In a study published today in the journal Cell Metabolism, the researchers identified 20 genes that are involved in this process. Besides giving scientists a better idea of where to look to uncover the mechanisms that ensure cholesterol balance is maintained, the discovery could lead to new treatments for cholesterol-related diseases.

“This finding may open new avenues for designing targeted therapies, for example by looking for small molecules that could impact these genes,” says Heiko Runz, whose group at the University Clinic Heidelberg carried out the research together with Rainer Pepperkok's lab at EMBL.

High levels of cholesterol in the bloodstream are a major risk factor for atherosclerosis and coronary heart disease, one of the leading causes of death in developed countries today. Nevertheless, cholesterol is an important cellular component: 90% of the cholesterol in our bodies is inside our cells, where it does not cause any harm. Blood cholesterol levels are partly regulated by cells taking up cholesterol from the bloodstream, a process Runz and his colleagues are helping to unveil.

The researchers deprived isolated human cells of cholesterol and then looked at the whole genome to find the genes that react to changes in cholesterol levels by altering their expression. This large-scale approach pointed to hundreds of genes which might be involved in cholesterol regulation. To check which genes really were involved, the scientists used a technique called RNA interference to systematically turn each of the candidate genes off. With a microscope they then observed what effect switching off different genes had, both on cholesterol uptake and on the total amount of cholesterol inside cells.

Of the 20 genes the scientists identified as involved in regulating cholesterol levels and uptake, 12 were previously unknown. The remainder were known to have some link to lipid metabolism - how the body breaks down fat - including two genes that when mutated may cause heart disease, but which were only now shown to also play a part in bringing cholesterol into cells in the first place.

The scientists are now trying to discover exactly how the novel genes regulate cholesterol levels inside cells, as well as looking at patients to determine whether these genes (or alterations in them) do constitute risk factors, and investigating if and how they could be useful drug targets.

This discovery could help fight not only heart disease, but also other conditions, as one of the genes identified appears to influence the behaviour of NPC1, a protein involved in the neuro-degenerative Niemann-Pick disease.

The research was conducted under the Molecular Medicine Partnership Unit (MMPU), a collaboration between EMBL and Heidelberg University. “It is very convenient to have such a close partnership here in Heidelberg”, says Rainer Pepperkok from EMBL, adding, “it allowed us to use the sophisticated techniques and technology from EMBL to answer questions that first arose at the University clinic, whose clinical aspects will now help in the follow-up.”

Anna-Lynn Wegener
Press Officer
Meyerhofstrasse 1
D-69117 Heidelberg
Tel: +49 6221 387452
Fax: +49 6221 387525

Anna-Lynn Wegener | EMBL
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>