Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify cholesterol-regulating genes

08.07.2009
EMBL discovery may help fight major cause of heart disease

Scientists at the European Molecular Biology Laboratory (EMBL) and the University of Heidelberg, Germany, have come a step closer to understanding how cholesterol levels are regulated.

In a study published today in the journal Cell Metabolism, the researchers identified 20 genes that are involved in this process. Besides giving scientists a better idea of where to look to uncover the mechanisms that ensure cholesterol balance is maintained, the discovery could lead to new treatments for cholesterol-related diseases.

“This finding may open new avenues for designing targeted therapies, for example by looking for small molecules that could impact these genes,” says Heiko Runz, whose group at the University Clinic Heidelberg carried out the research together with Rainer Pepperkok's lab at EMBL.

High levels of cholesterol in the bloodstream are a major risk factor for atherosclerosis and coronary heart disease, one of the leading causes of death in developed countries today. Nevertheless, cholesterol is an important cellular component: 90% of the cholesterol in our bodies is inside our cells, where it does not cause any harm. Blood cholesterol levels are partly regulated by cells taking up cholesterol from the bloodstream, a process Runz and his colleagues are helping to unveil.

The researchers deprived isolated human cells of cholesterol and then looked at the whole genome to find the genes that react to changes in cholesterol levels by altering their expression. This large-scale approach pointed to hundreds of genes which might be involved in cholesterol regulation. To check which genes really were involved, the scientists used a technique called RNA interference to systematically turn each of the candidate genes off. With a microscope they then observed what effect switching off different genes had, both on cholesterol uptake and on the total amount of cholesterol inside cells.

Of the 20 genes the scientists identified as involved in regulating cholesterol levels and uptake, 12 were previously unknown. The remainder were known to have some link to lipid metabolism - how the body breaks down fat - including two genes that when mutated may cause heart disease, but which were only now shown to also play a part in bringing cholesterol into cells in the first place.

The scientists are now trying to discover exactly how the novel genes regulate cholesterol levels inside cells, as well as looking at patients to determine whether these genes (or alterations in them) do constitute risk factors, and investigating if and how they could be useful drug targets.

This discovery could help fight not only heart disease, but also other conditions, as one of the genes identified appears to influence the behaviour of NPC1, a protein involved in the neuro-degenerative Niemann-Pick disease.

The research was conducted under the Molecular Medicine Partnership Unit (MMPU), a collaboration between EMBL and Heidelberg University. “It is very convenient to have such a close partnership here in Heidelberg”, says Rainer Pepperkok from EMBL, adding, “it allowed us to use the sophisticated techniques and technology from EMBL to answer questions that first arose at the University clinic, whose clinical aspects will now help in the follow-up.”

Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
Tel: +49 6221 387452
Fax: +49 6221 387525
anna.wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>