Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify cholesterol-regulating genes

08.07.2009
EMBL discovery may help fight major cause of heart disease

Scientists at the European Molecular Biology Laboratory (EMBL) and the University of Heidelberg, Germany, have come a step closer to understanding how cholesterol levels are regulated.

In a study published today in the journal Cell Metabolism, the researchers identified 20 genes that are involved in this process. Besides giving scientists a better idea of where to look to uncover the mechanisms that ensure cholesterol balance is maintained, the discovery could lead to new treatments for cholesterol-related diseases.

“This finding may open new avenues for designing targeted therapies, for example by looking for small molecules that could impact these genes,” says Heiko Runz, whose group at the University Clinic Heidelberg carried out the research together with Rainer Pepperkok's lab at EMBL.

High levels of cholesterol in the bloodstream are a major risk factor for atherosclerosis and coronary heart disease, one of the leading causes of death in developed countries today. Nevertheless, cholesterol is an important cellular component: 90% of the cholesterol in our bodies is inside our cells, where it does not cause any harm. Blood cholesterol levels are partly regulated by cells taking up cholesterol from the bloodstream, a process Runz and his colleagues are helping to unveil.

The researchers deprived isolated human cells of cholesterol and then looked at the whole genome to find the genes that react to changes in cholesterol levels by altering their expression. This large-scale approach pointed to hundreds of genes which might be involved in cholesterol regulation. To check which genes really were involved, the scientists used a technique called RNA interference to systematically turn each of the candidate genes off. With a microscope they then observed what effect switching off different genes had, both on cholesterol uptake and on the total amount of cholesterol inside cells.

Of the 20 genes the scientists identified as involved in regulating cholesterol levels and uptake, 12 were previously unknown. The remainder were known to have some link to lipid metabolism - how the body breaks down fat - including two genes that when mutated may cause heart disease, but which were only now shown to also play a part in bringing cholesterol into cells in the first place.

The scientists are now trying to discover exactly how the novel genes regulate cholesterol levels inside cells, as well as looking at patients to determine whether these genes (or alterations in them) do constitute risk factors, and investigating if and how they could be useful drug targets.

This discovery could help fight not only heart disease, but also other conditions, as one of the genes identified appears to influence the behaviour of NPC1, a protein involved in the neuro-degenerative Niemann-Pick disease.

The research was conducted under the Molecular Medicine Partnership Unit (MMPU), a collaboration between EMBL and Heidelberg University. “It is very convenient to have such a close partnership here in Heidelberg”, says Rainer Pepperkok from EMBL, adding, “it allowed us to use the sophisticated techniques and technology from EMBL to answer questions that first arose at the University clinic, whose clinical aspects will now help in the follow-up.”

Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
Tel: +49 6221 387452
Fax: +49 6221 387525
anna.wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>