Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify cholesterol-regulating genes

08.07.2009
EMBL discovery may help fight major cause of heart disease

Scientists at the European Molecular Biology Laboratory (EMBL) and the University of Heidelberg, Germany, have come a step closer to understanding how cholesterol levels are regulated.

In a study published today in the journal Cell Metabolism, the researchers identified 20 genes that are involved in this process. Besides giving scientists a better idea of where to look to uncover the mechanisms that ensure cholesterol balance is maintained, the discovery could lead to new treatments for cholesterol-related diseases.

“This finding may open new avenues for designing targeted therapies, for example by looking for small molecules that could impact these genes,” says Heiko Runz, whose group at the University Clinic Heidelberg carried out the research together with Rainer Pepperkok's lab at EMBL.

High levels of cholesterol in the bloodstream are a major risk factor for atherosclerosis and coronary heart disease, one of the leading causes of death in developed countries today. Nevertheless, cholesterol is an important cellular component: 90% of the cholesterol in our bodies is inside our cells, where it does not cause any harm. Blood cholesterol levels are partly regulated by cells taking up cholesterol from the bloodstream, a process Runz and his colleagues are helping to unveil.

The researchers deprived isolated human cells of cholesterol and then looked at the whole genome to find the genes that react to changes in cholesterol levels by altering their expression. This large-scale approach pointed to hundreds of genes which might be involved in cholesterol regulation. To check which genes really were involved, the scientists used a technique called RNA interference to systematically turn each of the candidate genes off. With a microscope they then observed what effect switching off different genes had, both on cholesterol uptake and on the total amount of cholesterol inside cells.

Of the 20 genes the scientists identified as involved in regulating cholesterol levels and uptake, 12 were previously unknown. The remainder were known to have some link to lipid metabolism - how the body breaks down fat - including two genes that when mutated may cause heart disease, but which were only now shown to also play a part in bringing cholesterol into cells in the first place.

The scientists are now trying to discover exactly how the novel genes regulate cholesterol levels inside cells, as well as looking at patients to determine whether these genes (or alterations in them) do constitute risk factors, and investigating if and how they could be useful drug targets.

This discovery could help fight not only heart disease, but also other conditions, as one of the genes identified appears to influence the behaviour of NPC1, a protein involved in the neuro-degenerative Niemann-Pick disease.

The research was conducted under the Molecular Medicine Partnership Unit (MMPU), a collaboration between EMBL and Heidelberg University. “It is very convenient to have such a close partnership here in Heidelberg”, says Rainer Pepperkok from EMBL, adding, “it allowed us to use the sophisticated techniques and technology from EMBL to answer questions that first arose at the University clinic, whose clinical aspects will now help in the follow-up.”

Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
Tel: +49 6221 387452
Fax: +49 6221 387525
anna.wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>