Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify age-associated defects in schizophrenia

02.03.2010
Gene network-based analysis reveals unexpected results

The underlying causes of the debilitating psychiatric disorder schizophrenia remain poorly understood. In a new study published online in Genome Research March 2, 2010, however, scientists report that a powerful gene network analysis has revealed surprising new insights into how gene regulation and age play a role in schizophrenia.

Researchers are actively working to identify the direct cause of schizophrenia, likely rooted in interactions between genes and the environment resulting in abnormal gene expression in the central nervous system. Scientists have been studying expression changes in schizophrenia on an individual gene basis, yet this strategy has explained only a portion of the genetic risk.

In the new work, a team of researchers led by Associate Professor Elizabeth Thomas of The Scripps Research Institute has taken a novel approach to this problem, performing a gene network-based analysis that revealed surprising insight into schizophrenia development.

The group analyzed gene expression data from the prefrontal cortex, a region of the brain associated with schizophrenia, sampled post-mortem from normal individuals and schizophrenia patients ranging from 19 to 81 years old. However, instead of just looking at genes individually, Thomas and colleagues at the Scripps Translational Science Institute, Nicholas Schork and Ali Torkamani, considered interactions between genes, as well as groups of genes that showed similar patterns of expression, to identify dysfunctional cellular pathways in schizophrenia.

"Once gene co-expression networks are identified," said Thomas, "we can then ask how they are affected by factors such as age or drug treatment, or if they are associated with particular cell types in the brain."

The gene network analysis suggested that normal individuals and schizophrenia patients have an unexpectedly similar connectivity between genes, but the most surprising finding was a significant link between aging and gene expression patterns in schizophrenia. The team identified several groups of co-expressed genes that behaved differently in schizophrenia patients compared to normal subjects when age was considered.

A particularly striking age-related difference in co-expression was found in a group of 30 genes related to developmental processes of the nervous system. Normally these genes are turned off as a person ages, but in schizophrenia patients the genes remain active. This critical finding strongly suggests that age-related aberrant regulation of genes important for development can explain at least part of the manifestation of schizophrenia.

Thomas explained that these findings help to refine the developmental hypothesis of schizophrenia, which states that one or more pathogenic "triggers" occur during critical periods of development to increase risk of the disease. Specifically, this work indicates that abnormal gene expression in developmentally related genes might be a significant pathogenic trigger, occurring over a broader time-scale than expected.

"Rather than a pathological trigger occurring at a critical developmental time point," said Thomas, "the trigger is ongoing throughout development and aging."

Furthermore, Thomas noted that the new study supports early intervention and treatment of schizophrenia. Treatment approaches aimed at averting gene expression changes and altering the course of the disease could be specifically tailored to the age of the patient.

In addition to Thomas, Torkamani, and Schork, authors of the study, "Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia," include Brian Dean of the Mental Health Research Institute (Australia). See Genome Res doi:10.1101/gr.101956.109.

This work was supported by the Scripps Translational Science Institute Clinical Translational Science Award, the National Institutes of Health, and a Scripps Dickinson Fellowship.

Interested reporters may obtain copies of the manuscript from Peggy Calicchia, Editorial Secretary, Genome Research (calicchi@cshl.edu; +1-516-422-4012).

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

About Genome Research

Launched in 1995, Genome Research (www.genome.org) is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine. Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.

About Cold Spring Harbor Laboratory Press

Cold Spring Harbor Laboratory is a private, nonprofit institution in New York that conducts research in cancer and other life sciences and has a variety of educational programs. Its press, originating in 1933, is the largest of the laboratory's five education divisions and is a publisher of books, journals, and electronic media for scientists, students, and the general public.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>