Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify a key molecule that blocks abnormal blood vessel growth in tumors

22.09.2011
Collaborative Efforts Between Moffitt Cancer Center And University Of Florida Scientists Identify A Key Molecule That Blocks Abnormal Blood Vessel Growth In Tumors

A new and better understanding of blood vessel growth and vascular development (angiogenesis) in cancer has been made possible by research carried out by a team of scientists from Moffitt Cancer Center, the University of Florida, Harvard University, Yale University and the Children's Hospital of Los Angeles.

The research team published the results of their investigation in a recent issue of Proceedings of the National Academy of Sciences.

"Vascular development is a fundamental biological process that is tightly controlled by both pro-and anti-angiogenic mechanisms," said Edward Seto, Ph.D., a co-author of the study and professor and chairman of the Department of Molecular Oncology at Moffitt. "Physiological angiogenesis occurs in adults only under specific settings. Excess angiogenesis contributes to a variety of diseases, including cancer. In cancer, vascular endothelial growth factor (VEGF) is commonly overproduced."

The goal of the research was to determine how angiogenesis is regulated by positive and negative biological activities.

"Understanding the biological principles that direct vascular growth has important clinical implications because cancers are highly vascularized," concluded Seto.

This meant seeking a better understanding of the relationship between the chromatin insulator binding factor CTCF and how it regulates VEGF expression.

"At the heart of vascular development is VEGF which, in precise doses, is an important stimulator of normal blood vessel growth," explained Seto. "However, VEGF - probably the most important stimulator of normal and pathological blood vessel growth - is regulated by a number of factors."

According to Seto, the study suggests that CTCF can block VEGF from being activated. Therefore, targeting CTCF may be an effective way to fine tune VEGF and control angiogenesis. The potential to manipulate CTCF opens a window to regulate VEGF and subsequently, the potential to manage angiogenesis and cancer.

"The real significance of this work has been apparent in experiments done at the University of Florida and at Harvard University, where our colleagues used mouse models to demonstrate that depletion of CTCF produces excess angiogenesis in animals," explained Seto. "Like finding a small key piece in a giant puzzle, it's truly exciting."

About Moffitt Cancer Center
Located in Tampa, Florida, Moffitt Cancer Center is an NCI Comprehensive Cancer Center - a designation that recognizes Moffitt's excellence in research and contributions to clinical trials, prevention and cancer control. Moffitt currently has 14 affiliates in Florida, one in Georgia, one in Pennsylvania and two in Puerto Rico. Additionally, Moffitt is a member of the National Comprehensive Cancer Network, a prestigious alliance of the country's leading cancer centers, and is listed in U.S. News & World Report as one of "America's Best Hospitals" for cancer. Moffitt marks a very important anniversary in 2011 - 25 years committed to one mission: to contribute to the prevention and cure of cancer.

Ferdie De Vega | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>