Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify a key molecule that blocks abnormal blood vessel growth in tumors

22.09.2011
Collaborative Efforts Between Moffitt Cancer Center And University Of Florida Scientists Identify A Key Molecule That Blocks Abnormal Blood Vessel Growth In Tumors

A new and better understanding of blood vessel growth and vascular development (angiogenesis) in cancer has been made possible by research carried out by a team of scientists from Moffitt Cancer Center, the University of Florida, Harvard University, Yale University and the Children's Hospital of Los Angeles.

The research team published the results of their investigation in a recent issue of Proceedings of the National Academy of Sciences.

"Vascular development is a fundamental biological process that is tightly controlled by both pro-and anti-angiogenic mechanisms," said Edward Seto, Ph.D., a co-author of the study and professor and chairman of the Department of Molecular Oncology at Moffitt. "Physiological angiogenesis occurs in adults only under specific settings. Excess angiogenesis contributes to a variety of diseases, including cancer. In cancer, vascular endothelial growth factor (VEGF) is commonly overproduced."

The goal of the research was to determine how angiogenesis is regulated by positive and negative biological activities.

"Understanding the biological principles that direct vascular growth has important clinical implications because cancers are highly vascularized," concluded Seto.

This meant seeking a better understanding of the relationship between the chromatin insulator binding factor CTCF and how it regulates VEGF expression.

"At the heart of vascular development is VEGF which, in precise doses, is an important stimulator of normal blood vessel growth," explained Seto. "However, VEGF - probably the most important stimulator of normal and pathological blood vessel growth - is regulated by a number of factors."

According to Seto, the study suggests that CTCF can block VEGF from being activated. Therefore, targeting CTCF may be an effective way to fine tune VEGF and control angiogenesis. The potential to manipulate CTCF opens a window to regulate VEGF and subsequently, the potential to manage angiogenesis and cancer.

"The real significance of this work has been apparent in experiments done at the University of Florida and at Harvard University, where our colleagues used mouse models to demonstrate that depletion of CTCF produces excess angiogenesis in animals," explained Seto. "Like finding a small key piece in a giant puzzle, it's truly exciting."

About Moffitt Cancer Center
Located in Tampa, Florida, Moffitt Cancer Center is an NCI Comprehensive Cancer Center - a designation that recognizes Moffitt's excellence in research and contributions to clinical trials, prevention and cancer control. Moffitt currently has 14 affiliates in Florida, one in Georgia, one in Pennsylvania and two in Puerto Rico. Additionally, Moffitt is a member of the National Comprehensive Cancer Network, a prestigious alliance of the country's leading cancer centers, and is listed in U.S. News & World Report as one of "America's Best Hospitals" for cancer. Moffitt marks a very important anniversary in 2011 - 25 years committed to one mission: to contribute to the prevention and cure of cancer.

Ferdie De Vega | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>