Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify a key molecule that blocks abnormal blood vessel growth in tumors

22.09.2011
Collaborative Efforts Between Moffitt Cancer Center And University Of Florida Scientists Identify A Key Molecule That Blocks Abnormal Blood Vessel Growth In Tumors

A new and better understanding of blood vessel growth and vascular development (angiogenesis) in cancer has been made possible by research carried out by a team of scientists from Moffitt Cancer Center, the University of Florida, Harvard University, Yale University and the Children's Hospital of Los Angeles.

The research team published the results of their investigation in a recent issue of Proceedings of the National Academy of Sciences.

"Vascular development is a fundamental biological process that is tightly controlled by both pro-and anti-angiogenic mechanisms," said Edward Seto, Ph.D., a co-author of the study and professor and chairman of the Department of Molecular Oncology at Moffitt. "Physiological angiogenesis occurs in adults only under specific settings. Excess angiogenesis contributes to a variety of diseases, including cancer. In cancer, vascular endothelial growth factor (VEGF) is commonly overproduced."

The goal of the research was to determine how angiogenesis is regulated by positive and negative biological activities.

"Understanding the biological principles that direct vascular growth has important clinical implications because cancers are highly vascularized," concluded Seto.

This meant seeking a better understanding of the relationship between the chromatin insulator binding factor CTCF and how it regulates VEGF expression.

"At the heart of vascular development is VEGF which, in precise doses, is an important stimulator of normal blood vessel growth," explained Seto. "However, VEGF - probably the most important stimulator of normal and pathological blood vessel growth - is regulated by a number of factors."

According to Seto, the study suggests that CTCF can block VEGF from being activated. Therefore, targeting CTCF may be an effective way to fine tune VEGF and control angiogenesis. The potential to manipulate CTCF opens a window to regulate VEGF and subsequently, the potential to manage angiogenesis and cancer.

"The real significance of this work has been apparent in experiments done at the University of Florida and at Harvard University, where our colleagues used mouse models to demonstrate that depletion of CTCF produces excess angiogenesis in animals," explained Seto. "Like finding a small key piece in a giant puzzle, it's truly exciting."

About Moffitt Cancer Center
Located in Tampa, Florida, Moffitt Cancer Center is an NCI Comprehensive Cancer Center - a designation that recognizes Moffitt's excellence in research and contributions to clinical trials, prevention and cancer control. Moffitt currently has 14 affiliates in Florida, one in Georgia, one in Pennsylvania and two in Puerto Rico. Additionally, Moffitt is a member of the National Comprehensive Cancer Network, a prestigious alliance of the country's leading cancer centers, and is listed in U.S. News & World Report as one of "America's Best Hospitals" for cancer. Moffitt marks a very important anniversary in 2011 - 25 years committed to one mission: to contribute to the prevention and cure of cancer.

Ferdie De Vega | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>