Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists gear up to fight deadly snake fungal disease

16.07.2014

Researchers have developed a faster and more accurate way to test for infection with Ophidiomyces ophiodiicola, a fungus that is killing snakes in the Midwest and eastern United States. The test also allows scientists to monitor the progression of the infection in living snakes.

The researchers reported on the test at the 2014 Mycological Society of America Annual Meeting.


The fungus Ophidiomyces ophiodiicola threatens the last population of eastern massasauga rattlesnakes in Illinois.

Credit: Matt Allender

"We need people to know that they don't have to anesthetize an animal to collect a biopsy sample or, worse yet, euthanize snakes in order to test for the infection," said University of Illinois comparative biosciences department professor Matthew Allender, an expert in snake fungal disease. "Now we can identify the infections earlier, we can intervene earlier and we can potentially increase our success of treatment or therapy."

The new test uses quantitative polymerase chain reaction (qPCR), which amplifies fungal DNA to identify the species present and measure the extent of infection.

... more about:
»INHS »PCR »bats »biopsy »fungal »fungus »infections

Researchers first took notice of Ophidiomyces (oh-FID-ee-oh-my-sees) in snakes in the mid-2000s. Today the fungus threatens the last remaining eastern massasauga (mass-uh-SAW-guh) rattlesnake population in Illinois and has been found to infect timber rattlesnakes, mud snakes, rat snakes, garter snakes, milk snakes, water snakes and racers in several states, Allender said.

"I've tested snakes from Illinois, Tennessee and Michigan, and we've tested samples from snakes in New Jersey, Georgia and Virginia," Allender said. Snakes in Connecticut, Massachusetts, Minnesota, New Hampshire, New York, Ohio and Wisconsin have also tested positive for the fungus. (Watch a movie about the research)

Ophidiomyces consumes keratin, a key ingredient in snake scales. It can cause scabs, nodules, abnormal molting, ulcers and other disfiguring changes to snake skin. Mortality is 100 percent in Illinois massasauga rattlesnakes found with outward signs of infection, Allender said. There are only 100 to 150 massasaugas left in Illinois, he said, and about 15 percent of those are infected with the disease.

Allender also is an affiliate of the Illinois Natural History Survey, part of the Prairie Research Institute at the U. of I. He and his INHS colleague, mycologist Andrew Miller, liken this emerging fungal disease in snakes to white-nose syndrome, another fungal disease that has killed millions of North American bats. Miller and graduate student Daniel Raudabaugh recently published an analysis of Pseudogymnoascus destructans, the fungus implicated in white-nosed syndrome, and are repeating the analysis on Ophidiomyces.

"The fungus killing these snakes is remarkably similar in its basic biology to the fungus that has killed over 6 million bats," Miller said. "It occurs in the soil, seems to grow on a wide variety of substances, and possesses many of the same enzymes that make the bat fungus so deadly."

Other colleagues at the INHS, herpetologists Michael Dreslik and Chris Phillips, have been studying eastern massasauga rattlesnakes in the wild for 15 years, and are working closely with Allender to characterize both biological and health factors that lead to infection. The new qPCR test is integral to this mission, Allender said. It also will help the team develop new therapies to treat infections in snakes.

"This work is truly collaborative across disciplines, allowing the team to make advances in studying this disease that haven't been accomplished anywhere else," Allender said.

"Our qPCR is more than 1,000 times more sensitive than conventional PCR," Allender said. "We can know how many [fungal spores] are in a swab and then we can start to treat the snake and we can watch to see if that number is going down."

The researchers also are hoping to find new disinfectants that will kill the fungus so that researchers who are studying snakes in the wild will not spread it to new locales on their equipment or shoes.

"Some of our preliminary studies show that the common disinfectants that we use are not effective," Allender said. "This fungus overcomes it."

###

The Illinois Wildlife Preservation Fund Grant Program, offered through the Illinois Department of Natural Resources, provided support for this work. Funds for this program are generated through the tax check-off offered on Illinois income tax returns.

Editor's notes: To reach Matthew Allender, call 217-265-0320; email mcallend@illinois.edu.

Diana Yates | University of Illinois

Further reports about: INHS PCR bats biopsy fungal fungus infections

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>