Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Fool Bacteria Into Killing Themselves To Survive

Like fireman fighting fire with fire, researchers at the University of Illinois and the University of Massachusetts at Amherst have found a way to fool a bacteria’s evolutionary machinery into programming its own death.

“The basic idea is for an antimicrobial to target something in a bacteria that, in order to gain immunity, would require the bacteria to kill itself through a suicide mutation,” said Gerard Wong, a professor of materials science and engineering, of physics, and of bioengineering at the U. of I.

Wong is corresponding author of a paper accepted for publication in the Proceedings of the National Academy of Sciences. The paper is to be posted this week on the journal’s Web site.

The researchers show that a synthetic “hole punching” antimicrobial depends on the presence of phosphoethanolamine, a cone-shaped lipid found in high concentrations within Gram-negative bacterial membranes. Although PE lipids are commandeered to kill the bacteria, without the lipids the bacteria would die, also.

“It’s a Catch-22,” Wong said. “Some mutations bacteria can tolerate, and some mutations they cannot tolerate. In this case, the bacteria would have to go through a mutation that would kill it, in order to be immune to these antimicrobials.”

In their work, the researchers compared the survival of the bacterium Escherichia coli with that of a mutant strain of E. coli, which lacked PE lipids in its membrane. The fragile PE-deficient mutant strain out-survived the normal, healthy bacteria, when exposed to a “hole punching” synthetic antibiotic.

However, the opposite was true when both strains were exposed to tobramycin, a conventional metabolic antibiotic that targets the bacterial ribosomal machinery rather than the membrane.

The researchers first reported on compounds that functioned as molecular “hole punchers” last year in the Journal of the American Chemical Society. Their latest work further elucidates the “hole punching” mechanism.

“The antimicrobial re-organizes PE lipids into holes in the membrane,” said Wong, who also is a researcher at the university’s Beckman Institute. “The perforated membranes leak, and the bacteria die.”

Finding new ways to treat emerging pathogens that are more and more resistant to the best antibiotics will be increasingly important in the future, Wong said. “Now that we more fully understand how our molecular ‘hole punchers’ work, we can look for similar ways to make antimicrobials that bacteria cannot evolve immunity to.”

With Wong, the paper’s co-authors include U. of I. graduate student and lead author Lihua Yang, materials science and engineering professor Dallas R. Trinkle, microbiology professor John E. Cronan Jr., and University of Massachusetts polymer science and engineering professor Gregory N. Tew, a U. of I. alumnus.

The work was funded by the National Science Foundation, the National Institutes of Health and the Office of Naval Research.

James E. Kloeppel | University of Illinois
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>