Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Fool Bacteria Into Killing Themselves To Survive

16.12.2008
Like fireman fighting fire with fire, researchers at the University of Illinois and the University of Massachusetts at Amherst have found a way to fool a bacteria’s evolutionary machinery into programming its own death.

“The basic idea is for an antimicrobial to target something in a bacteria that, in order to gain immunity, would require the bacteria to kill itself through a suicide mutation,” said Gerard Wong, a professor of materials science and engineering, of physics, and of bioengineering at the U. of I.

Wong is corresponding author of a paper accepted for publication in the Proceedings of the National Academy of Sciences. The paper is to be posted this week on the journal’s Web site.

The researchers show that a synthetic “hole punching” antimicrobial depends on the presence of phosphoethanolamine, a cone-shaped lipid found in high concentrations within Gram-negative bacterial membranes. Although PE lipids are commandeered to kill the bacteria, without the lipids the bacteria would die, also.

“It’s a Catch-22,” Wong said. “Some mutations bacteria can tolerate, and some mutations they cannot tolerate. In this case, the bacteria would have to go through a mutation that would kill it, in order to be immune to these antimicrobials.”

In their work, the researchers compared the survival of the bacterium Escherichia coli with that of a mutant strain of E. coli, which lacked PE lipids in its membrane. The fragile PE-deficient mutant strain out-survived the normal, healthy bacteria, when exposed to a “hole punching” synthetic antibiotic.

However, the opposite was true when both strains were exposed to tobramycin, a conventional metabolic antibiotic that targets the bacterial ribosomal machinery rather than the membrane.

The researchers first reported on compounds that functioned as molecular “hole punchers” last year in the Journal of the American Chemical Society. Their latest work further elucidates the “hole punching” mechanism.

“The antimicrobial re-organizes PE lipids into holes in the membrane,” said Wong, who also is a researcher at the university’s Beckman Institute. “The perforated membranes leak, and the bacteria die.”

Finding new ways to treat emerging pathogens that are more and more resistant to the best antibiotics will be increasingly important in the future, Wong said. “Now that we more fully understand how our molecular ‘hole punchers’ work, we can look for similar ways to make antimicrobials that bacteria cannot evolve immunity to.”

With Wong, the paper’s co-authors include U. of I. graduate student and lead author Lihua Yang, materials science and engineering professor Dallas R. Trinkle, microbiology professor John E. Cronan Jr., and University of Massachusetts polymer science and engineering professor Gregory N. Tew, a U. of I. alumnus.

The work was funded by the National Science Foundation, the National Institutes of Health and the Office of Naval Research.

James E. Kloeppel | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>