Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Fool Bacteria Into Killing Themselves To Survive

16.12.2008
Like fireman fighting fire with fire, researchers at the University of Illinois and the University of Massachusetts at Amherst have found a way to fool a bacteria’s evolutionary machinery into programming its own death.

“The basic idea is for an antimicrobial to target something in a bacteria that, in order to gain immunity, would require the bacteria to kill itself through a suicide mutation,” said Gerard Wong, a professor of materials science and engineering, of physics, and of bioengineering at the U. of I.

Wong is corresponding author of a paper accepted for publication in the Proceedings of the National Academy of Sciences. The paper is to be posted this week on the journal’s Web site.

The researchers show that a synthetic “hole punching” antimicrobial depends on the presence of phosphoethanolamine, a cone-shaped lipid found in high concentrations within Gram-negative bacterial membranes. Although PE lipids are commandeered to kill the bacteria, without the lipids the bacteria would die, also.

“It’s a Catch-22,” Wong said. “Some mutations bacteria can tolerate, and some mutations they cannot tolerate. In this case, the bacteria would have to go through a mutation that would kill it, in order to be immune to these antimicrobials.”

In their work, the researchers compared the survival of the bacterium Escherichia coli with that of a mutant strain of E. coli, which lacked PE lipids in its membrane. The fragile PE-deficient mutant strain out-survived the normal, healthy bacteria, when exposed to a “hole punching” synthetic antibiotic.

However, the opposite was true when both strains were exposed to tobramycin, a conventional metabolic antibiotic that targets the bacterial ribosomal machinery rather than the membrane.

The researchers first reported on compounds that functioned as molecular “hole punchers” last year in the Journal of the American Chemical Society. Their latest work further elucidates the “hole punching” mechanism.

“The antimicrobial re-organizes PE lipids into holes in the membrane,” said Wong, who also is a researcher at the university’s Beckman Institute. “The perforated membranes leak, and the bacteria die.”

Finding new ways to treat emerging pathogens that are more and more resistant to the best antibiotics will be increasingly important in the future, Wong said. “Now that we more fully understand how our molecular ‘hole punchers’ work, we can look for similar ways to make antimicrobials that bacteria cannot evolve immunity to.”

With Wong, the paper’s co-authors include U. of I. graduate student and lead author Lihua Yang, materials science and engineering professor Dallas R. Trinkle, microbiology professor John E. Cronan Jr., and University of Massachusetts polymer science and engineering professor Gregory N. Tew, a U. of I. alumnus.

The work was funded by the National Science Foundation, the National Institutes of Health and the Office of Naval Research.

James E. Kloeppel | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>