Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists first to grow organ in animal from cells created in lab

26.08.2014

Laboratory-grown replacement organs have moved a step closer with the completion of a new study.

Scientists have grown a fully functional organ from transplanted laboratory-created cells in a living animal for the first time.

World's First Working Organ Grown in An Animal from Lab-Created Cells

Scientists have grown a fully functional organ from transplanted laboratory-created cells in a living animal for the first time. They grew a working thymus -- an important organ that supplies the body with immune cells. Left: Specialised thymus cells were created in the lab from a completely different cell type using a technique called reprogramming. Right: The laboratory-created cells were transplanted onto a mouse kidney to form an organised and functional mini-thymus in a living animal.

Credit: MRC Centre for Regenerative Medicine, University of Edinburgh

The researchers have created a thymus - an organ next to the heart that produces immune cells known as T cells that are vital for guarding against disease.

They hope that, with further research, the discovery could lead to new treatments for people with a weakened immune system.

The team from the MRC Centre for Regenerative Medicine at the University of Edinburgh took cells called fibroblasts from a mouse embryo. They turned the fibroblasts into a completely different type of cell called thymus cells, using a technique called reprogramming.

The reprogrammed cells changed shape to look like thymus cells and were also capable of supporting development of T cells in the lab – a specialised function that only thymus cells can perform.

When the researchers mixed reprogrammed cells with other key thymus cell types and transplanted them into a mouse, the cells formed a replacement organ. The new organ had the same structure, complexity and function as a healthy adult thymus.

It is the first time that scientists have made an entire living organ from cells that were created outside of the body by reprogramming.

Doctors have already shown that patients with thymus disorders can be treated with infusions of extra immune cells or transplantation of a thymus organ soon after birth. The problem is that both are limited by a lack of donors and problems matching tissue to the recipient.

With further refinement, the researchers hope that their lab-grown cells could form the basis of a thymus transplant treatment for people with a weakened immune system.

The technique may also offer a way of making patient-matched T cells in the laboratory that could be used in cell therapies.

Such treatments could benefit bone marrow transplant patients, by helping speed up the rate at which they rebuild their immune system after transplant.

The discovery offers hope to babies born with genetic conditions that prevent the thymus from developing properly. Older people could also be helped as the thymus is the first organ to deteriorate with age.

The study is published today in the journal Nature Cell Biology.

Professor Clare Blackburn from the MRC Centre for Regenerative Medicine at the University of Edinburgh, who led the research, said: "Our research represents an important step towards the goal of generating a clinically useful artificial thymus in the lab."

Dr Rob Buckle, Head of Regenerative Medicine at the MRC, said: "This is an exciting study but much more work will be needed before this process can be reproduced in a safe and tightly controlled way suitable for use in humans."

Jen Middleton | Eurek Alert!
Further information:
http://www.ed.ac.uk

Further reports about: MRC Medicine created fibroblasts function grow immune reprogrammed transplant transplanted

More articles from Life Sciences:

nachricht Surprising similarity in fly and mouse motion vision
30.07.2015 | Max Planck Institute of Neurobiology, Martinsried

nachricht Intracellular microlasers could allow precise labeling of a trillion individual cells
30.07.2015 | Massachusetts General Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Surprising similarity in fly and mouse motion vision

30.07.2015 | Life Sciences

Efficient Infrared Heat Saves Time and Energy in the Manufacture of Motor Vehicle Carpets

30.07.2015 | Trade Fair News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>