Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists first to grow organ in animal from cells created in lab

26.08.2014

Laboratory-grown replacement organs have moved a step closer with the completion of a new study.

Scientists have grown a fully functional organ from transplanted laboratory-created cells in a living animal for the first time.

World's First Working Organ Grown in An Animal from Lab-Created Cells

Scientists have grown a fully functional organ from transplanted laboratory-created cells in a living animal for the first time. They grew a working thymus -- an important organ that supplies the body with immune cells. Left: Specialised thymus cells were created in the lab from a completely different cell type using a technique called reprogramming. Right: The laboratory-created cells were transplanted onto a mouse kidney to form an organised and functional mini-thymus in a living animal.

Credit: MRC Centre for Regenerative Medicine, University of Edinburgh

The researchers have created a thymus - an organ next to the heart that produces immune cells known as T cells that are vital for guarding against disease.

They hope that, with further research, the discovery could lead to new treatments for people with a weakened immune system.

The team from the MRC Centre for Regenerative Medicine at the University of Edinburgh took cells called fibroblasts from a mouse embryo. They turned the fibroblasts into a completely different type of cell called thymus cells, using a technique called reprogramming.

The reprogrammed cells changed shape to look like thymus cells and were also capable of supporting development of T cells in the lab – a specialised function that only thymus cells can perform.

When the researchers mixed reprogrammed cells with other key thymus cell types and transplanted them into a mouse, the cells formed a replacement organ. The new organ had the same structure, complexity and function as a healthy adult thymus.

It is the first time that scientists have made an entire living organ from cells that were created outside of the body by reprogramming.

Doctors have already shown that patients with thymus disorders can be treated with infusions of extra immune cells or transplantation of a thymus organ soon after birth. The problem is that both are limited by a lack of donors and problems matching tissue to the recipient.

With further refinement, the researchers hope that their lab-grown cells could form the basis of a thymus transplant treatment for people with a weakened immune system.

The technique may also offer a way of making patient-matched T cells in the laboratory that could be used in cell therapies.

Such treatments could benefit bone marrow transplant patients, by helping speed up the rate at which they rebuild their immune system after transplant.

The discovery offers hope to babies born with genetic conditions that prevent the thymus from developing properly. Older people could also be helped as the thymus is the first organ to deteriorate with age.

The study is published today in the journal Nature Cell Biology.

Professor Clare Blackburn from the MRC Centre for Regenerative Medicine at the University of Edinburgh, who led the research, said: "Our research represents an important step towards the goal of generating a clinically useful artificial thymus in the lab."

Dr Rob Buckle, Head of Regenerative Medicine at the MRC, said: "This is an exciting study but much more work will be needed before this process can be reproduced in a safe and tightly controlled way suitable for use in humans."

Jen Middleton | Eurek Alert!
Further information:
http://www.ed.ac.uk

Further reports about: MRC Medicine created fibroblasts function grow immune reprogrammed transplant transplanted

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>