Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find unsuspected molecular link between obesity and insulin resistance

22.07.2010
Discovery raises possibility of safer, more selective diabetes drugs

A new understanding of insulin resistance and the action of diabetes drugs such as Avandia and Actos could pave the way for improved medications that are more selective and safer, say scientists from Dana-Farber Cancer Institute and The Scripps Research Institute.

"Our findings strongly suggest that good and bad effects of these drugs can be separated by designing second-generation drugs that focus on the newly uncovered mechanism," said Bruce Spiegelman, PhD, of Dana-Farber, senior author on a report appearing in the July 22 issue of Nature.

Avandia and Actos, known generically as rosiglitazone and pioglitazone, are widely used to counteract the obesity-related abnormalities in insulin response that lead to diabetes. The drugs act on a master regulatory protein called PPAR-gamma, primarily in fat cells, which governs genes involved in the body's response to insulin.

Obesity resulting from a high-fat diet alters the function of PPAR-gamma and disrupts the expression of those insulin response genes, including adipsin and adiponectin. Avandia and Actos work by binding to PPAR-gamma and reversing the gene expression changes.

The drugs were believed to work by stimulating or "agonizing" the PPAR-gamma receptor, causing it to rev up some genes and dampen the activity of others.

In the Nature report, however, the researchers say they have identified "an entirely new and surprising mechanism by which PPAR-gamma can control whole-body insulin sensitivity." It is mainly through this mechanism, they found, that the diabetes drugs counteract insulin resistance – not their agonist effect on PPAR-gamma. Moreover, they say, agonism of PPAR-gamma may be largely responsible for the harmful drug side effects.

The newly identified pathway linking obesity and insulin response involves cdk5, a protein kinase, or molecular "switch." When cdk5 is activated by the development of obesity in mice, it causes a chemical change in PPAR-gamma called phosphorylation. In contrast to agonism of PPAR-gamma, phosphorylation has a narrow effect, disrupting a smaller set of genes that lead to insulin resistance.

In addition to agonizing PPAR-gamma, Avandia and Actos also block the phosphorylation of PPAR-gamma by cdk5. It's this latter effect that accounts for most of the drugs' anti-diabetic benefits, the authors contend. "Agonism may not be therapeutically necessary and likely results in a lot of the toxicities," Spiegelman said.

The strength of various drugs' agonist effects on PPAR-gamma doesn't correlate with how well they work, the researchers observe; instead, it is their ability to block cdk5 phosphorylation that counts. In support of this assertion, the paper describes the researchers' findings from patients treated with Avandia in a German clinical trial. It showed that improvements in insulin sensitivity were tightly correlated with decreased phosphorylation of PPAR-gamma.

"I think this is a really important finding, and potentially very timely in light of the current discussions about Avandia," commented Jeffrey Flier, MD, Dean of the Harvard Medical School, a leading researcher in obesity, insulin resistance, and diabetes.

"It may motivate pharmaceutical companies to take another look at compounds acting through PPAR-gamma that were taken to various stages of development but put on hold because they did not demonstrate strong agonism of PPAR-gamma," Flier said. "People may have been focusing on the wrong outcomes."

Avandia and Actos belong to a relatively new class of compounds called thiazolidinediones, the first medications that can reverse insulin resistance. They have been widely used to treat Type 2 diabetes since being approved in 1999. However, in recent years they have been linked in some patients to heart attacks, heart failure, and strokes. Thousands of lawsuits have been filed against the maker of Avandia, and the US Food and Drug Administration is currently weighing whether it should be taken off the market.

The research was supported by grants from the National Institutes of Health.

The paper's first author is Jang-Hyun Choi, PhD, of Dana-Farber.

The co-authors are Alexander S. Banks, PhD, Jennifer L. Estall, PhD, Shingo Kajimura, PhD, Pontus Bostrom, MD, PhD, Dina Laznik, Jorge L. Ruas, PharmD, PhD, Dana-Farber; Patrick R. Griffin, PhD, Michael J. Chalmers, PhD, and Theodore M. Kamenecka, PhD, Scripps Research Institute, Jupiter, Fla.; and Matthias Bluher, MD, University of Leipzig, Germany.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Teresa Herbert | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>