Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find unsuspected molecular link between obesity and insulin resistance

22.07.2010
Discovery raises possibility of safer, more selective diabetes drugs

A new understanding of insulin resistance and the action of diabetes drugs such as Avandia and Actos could pave the way for improved medications that are more selective and safer, say scientists from Dana-Farber Cancer Institute and The Scripps Research Institute.

"Our findings strongly suggest that good and bad effects of these drugs can be separated by designing second-generation drugs that focus on the newly uncovered mechanism," said Bruce Spiegelman, PhD, of Dana-Farber, senior author on a report appearing in the July 22 issue of Nature.

Avandia and Actos, known generically as rosiglitazone and pioglitazone, are widely used to counteract the obesity-related abnormalities in insulin response that lead to diabetes. The drugs act on a master regulatory protein called PPAR-gamma, primarily in fat cells, which governs genes involved in the body's response to insulin.

Obesity resulting from a high-fat diet alters the function of PPAR-gamma and disrupts the expression of those insulin response genes, including adipsin and adiponectin. Avandia and Actos work by binding to PPAR-gamma and reversing the gene expression changes.

The drugs were believed to work by stimulating or "agonizing" the PPAR-gamma receptor, causing it to rev up some genes and dampen the activity of others.

In the Nature report, however, the researchers say they have identified "an entirely new and surprising mechanism by which PPAR-gamma can control whole-body insulin sensitivity." It is mainly through this mechanism, they found, that the diabetes drugs counteract insulin resistance – not their agonist effect on PPAR-gamma. Moreover, they say, agonism of PPAR-gamma may be largely responsible for the harmful drug side effects.

The newly identified pathway linking obesity and insulin response involves cdk5, a protein kinase, or molecular "switch." When cdk5 is activated by the development of obesity in mice, it causes a chemical change in PPAR-gamma called phosphorylation. In contrast to agonism of PPAR-gamma, phosphorylation has a narrow effect, disrupting a smaller set of genes that lead to insulin resistance.

In addition to agonizing PPAR-gamma, Avandia and Actos also block the phosphorylation of PPAR-gamma by cdk5. It's this latter effect that accounts for most of the drugs' anti-diabetic benefits, the authors contend. "Agonism may not be therapeutically necessary and likely results in a lot of the toxicities," Spiegelman said.

The strength of various drugs' agonist effects on PPAR-gamma doesn't correlate with how well they work, the researchers observe; instead, it is their ability to block cdk5 phosphorylation that counts. In support of this assertion, the paper describes the researchers' findings from patients treated with Avandia in a German clinical trial. It showed that improvements in insulin sensitivity were tightly correlated with decreased phosphorylation of PPAR-gamma.

"I think this is a really important finding, and potentially very timely in light of the current discussions about Avandia," commented Jeffrey Flier, MD, Dean of the Harvard Medical School, a leading researcher in obesity, insulin resistance, and diabetes.

"It may motivate pharmaceutical companies to take another look at compounds acting through PPAR-gamma that were taken to various stages of development but put on hold because they did not demonstrate strong agonism of PPAR-gamma," Flier said. "People may have been focusing on the wrong outcomes."

Avandia and Actos belong to a relatively new class of compounds called thiazolidinediones, the first medications that can reverse insulin resistance. They have been widely used to treat Type 2 diabetes since being approved in 1999. However, in recent years they have been linked in some patients to heart attacks, heart failure, and strokes. Thousands of lawsuits have been filed against the maker of Avandia, and the US Food and Drug Administration is currently weighing whether it should be taken off the market.

The research was supported by grants from the National Institutes of Health.

The paper's first author is Jang-Hyun Choi, PhD, of Dana-Farber.

The co-authors are Alexander S. Banks, PhD, Jennifer L. Estall, PhD, Shingo Kajimura, PhD, Pontus Bostrom, MD, PhD, Dina Laznik, Jorge L. Ruas, PharmD, PhD, Dana-Farber; Patrick R. Griffin, PhD, Michael J. Chalmers, PhD, and Theodore M. Kamenecka, PhD, Scripps Research Institute, Jupiter, Fla.; and Matthias Bluher, MD, University of Leipzig, Germany.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Teresa Herbert | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>