Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Possible Solution to an Ancient Enigma

29.05.2013
The widespread disappearance of stromatolites, the earliest visible manifestation of life on Earth, may have been driven by single-celled organisms called foraminifera.
The findings, by scientists at Woods Hole Oceanographic Institution (WHOI); Massachusetts Institute of Technology; the University of Connecticut; Harvard Medical School; and Beth Israel Deaconess Medical Center, Boston, were published online the week of May 27 in the Proceedings of the National Academy of Sciences.

Stromatolites (“layered rocks”) are structures made of calcium carbonate and shaped by the actions of photosynthetic cyanobacteria and other microbes that trapped and bound grains of coastal sediment into fine layers. They showed up in great abundance along shorelines all over the world about 3.5 billion years ago.

“Stromatolites were one of the earliest examples of the intimate connection between biology—living things—and geology—the structure of the Earth itself,” said WHOI geobiologist Joan Bernhard, lead author of the study.

The growing bacterial community secreted sticky compounds that bound the sediment grains around themselves, creating a mineral “microfabric” that accumulated to become massive formations. Stromatolites dominated the scene for more than two billion years, until late in the Proterozoic Eon.

“Then, around 1 billion years ago, their diversity and their fossil abundance begin to take a nosedive,” said Bernhard. All over the globe, over a period of millions of years, the layered formations that had been so abundant and diverse began to disappear. To paleontologists, their loss was almost as dramatic as the extinction of the dinosaurs millions of years later, although not as complete: Living stromatolites can still be found today, in limited and widely scattered locales, as if a few velociraptors still roamed in remote valleys.

While the extinction of the dinosaurs has largely been explained by the impact of a large meteorite, the crash of the stromatolites remains unsolved. “It’s one of the major questions in Earth history,” said WHOI microbial ecologist Virginia Edgcomb, a co-author on the paper.

Just as puzzling is the sudden appearance in the fossil record of different formations called thrombolites (“clotted stones”). Like stromatolites, thrombolites are produced through the action of microbes on sediment and minerals. Unlike stromatolites, they are clumpy, rather than finely layered.

It’s not known whether stromatolites became thrombolites, or whether thrombolites arose independently of the decline in strombolites. Hypotheses proposed to explain both include changes in ocean chemistry and the appearance of multicellular life forms that might have preyed on the microbes responsible for their structure.

Bernhard and Edgcomb thought foraminifera might have played a role. Foraminifera (or “forams,” for short) are protists, the kingdom that includes amoeba, ciliates, and other groups formerly referred to as “protozoa.” They are abundant in modern-day oceanic sediments, where they use numerous slender projections called pseudopods to engulf prey, to move, and to continually explore their immediate environment. Despite their known ability to disturb modern sediments, their possible role in the loss of stromatolites and appearance of thrombolites had never been considered.

The researchers examined modern stromatolites and thrombolites from Highborne Cay in the Bahamas for the presence of foraminifera. Using microscopic and rRNA sequencing techniques, they found forams in both kinds of structures. Thrombolites were home to a greater diversity of foraminifera and were especially rich in forams that secrete an organic sheath around themselves. These “thecate” foraminifera were probably the first kinds of forams to evolve, not long (in geologic terms) before stromatolites began to decline.

“The timing of their appearance corresponds with the decline of layered stromatolites and the appearance of thrombolites in the fossil record,” said Edgcomb. “That lends support to the idea that it could have been forams that drove their evolution.”

Next, Bernhard, Edgcomb, and postdoctoral investigator Anna McIntyre-Wressnig created an experimental scenario that mimicked what might have happened a billion years ago.

“No one will ever be able to re-create the Proterozoic exactly, because life has evolved since then, but you do the best you can,” Edgcomb said.

They started with chunks of modern-day stromatolites collected at Highborne Cay, and seeded them with foraminifera found in modern-day thrombolites. Then they waited to see what effect, if any, the added forams had on the stromatolites.

After about six months, the finely layered arrangement characteristic of stromatolites had changed to a jumbled arrangement more like that of thrombolites. Even their fine structure, as revealed by CAT scans, resembled that of thrombolites collected from the wild. “The forams obliterated the microfabric,” said Bernhard.

That result was intriguing, but it did not prove that the changes in the structure were due to the activities of the foraminifera. Just being brought into the lab might have caused the changes. But the researchers included a control in their experiment: They seeded foraminifera onto freshly-collected stromatolites as before, but also treated them with colchicine, a drug that prevented them from sending out pseudopods. “They’re held hostage,” said Bernhard. “They’re in there, but they can’t eat, they can’t move.”

After about six months, the foraminifera were still present and alive—but the rock’s structure had not become more clotted like a thrombolite. It was still layered.

The researchers concluded that active foraminifera can reshape the fabric of stromatolites and could have instigated the loss of those formations and the appearance of thrombolites.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment. For more information, please visit www.whoi.edu.

WHOI Media Relations | EurekAlert!
Further information:
http://www.whoi.edu
http://www.whoi.edu/news-release/stramatolites

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>