Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find second site for prostate cancer gene

03.09.2008
Scientists at Wake Forest University School of Medicine and colleagues who are studying a prostate cancer gene called HNF1B have found a second independent site within the HNF1B gene on chromosome 17 (17q12) – increasing the number of genetic variants that may contribute to risk of developing the disease.

After comparing the newly-discovered site with a previously discovered site in the same gene among two large groups of patients in Sweden and at Johns Hopkins Hospital in Baltimore, "these data strongly suggest that the two sites are genetically independent," said Jianfeng Xu, M.D., Dr. Ph.H., senior researcher on the study.

"We found another genetic variant associated with prostate cancer risk," Xu said. "The more genetic variants we discover, the better off we are. As we find more of these, it improves our ability to predict prostate cancer risk."

Xu, a professor of epidemiology and cancer biology and Director of the Center for Cancer Genomics, reported the results with 30 colleagues in the current on-line version of Nature Genetics.

The researchers conducted what they termed a "fine-mapping study" in the two groups, one called CAPS, from Sweden, that had 2,899 prostate cancer cases and 1,722 control participants, and the Johns Hopkins study that had 1,527 prostate cancer patients and 482 control participants.

They found two separate clusters of prostate-cancer-associated SNPs (single nucleotide polymorphisms), one in a region previously identified and one in a new region. The researchers then worked to see whether the genetic variants were associated with risk of developing the disease. They looked at the same locations in five other large studies of prostate cancer patients and found that prostate cancer risk was higher among men who had the genetic variants. Earlier this year, the same research group reported in the New England Journal of Medicine that genetic variants have a strong cumulative effective. A man with four of the five previously discovered variants has a 400 percent increased risk of developing prostate cancer compared to men with none of the variants.

Xu said that as the number of genetic variants associated with prostate cancer risk continues to mount, it improves the precision of risk prediction. But he predicted that prostate cancer will be found to be polygenic, "not dependent on one gene, but a group of genes."

Prostate cancer risk might be plotted on a bell-shaped curve, with men with a family history of the disease and multiple variants being at the upper end of the curve.

The researchers are exploring another finding, that the HNF1B gene is also associated with diabetes. But if a patient with the HNF1B gene has diabetes, the prostate cancer risk decreases, "We still don't know how," Xu said.

Jessica Guenzel | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>