Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Previously Unseen Effects of Protein Buildup in Diabetic Baboons' Pancreases

22.07.2009
Protein buildup changes the microenvironment of a key area of the pancreas, resulting in a hormone imbalance that ultimately leads to type 2 diabetes, according to a new study from The University of Texas Health Science Center at San Antonio and collaborating institutions.

Undesirable protein deposits in the islets of Langerhans, the area of the pancreas that makes glucose-controlling hormones, are increased even when blood sugar levels are barely above normal, according to a newly published study by diabetes researchers from The University of Texas Health Science Center at San Antonio.

These deposits worsen as glucose increases, which is the key finding of the study, said Franco Folli, M.D., Ph.D., associate professor of medicine at the UT Health Science Center at San Antonio. He is senior author and principal investigator of the study article published in the July 20-24 online early edition of Proceedings of the National Academy of Sciences.

The researchers examined pancreatic tissue of 150 baboons that had died of natural causes, including diabetes. The team collaborated with the Southwest Foundation for Biomedical Research in San Antonio, which has a National Primate Research Center with a nonhuman primate model of type 2 diabetes mellitus. “Diabetes researchers, including us, have shown that baboons develop type 2 diabetes and obesity as it is observed in humans,” Dr. Folli said. “These conditions are a major health concern in Texas and the U.S.”

The deposits of a protein hormone, called Islet Amyloid Polypeptide (IAPP), somehow shift the microenvironment of the islets of Langerhans, the authors noted, making it toxic to cells that produce insulin, which lowers blood glucose levels. At the same time, the microenvironment promotes the replication of cells that produce a second hormone, glucagon, which raises blood glucose levels. The cells that produce insulin are called beta cells; the cells that produce glucagon are called alpha cells.

“For reasons we don’t fully understand, beta cells die in the amyloid-altered environment, but alpha cells proliferate,” Dr. Folli said. “It’s really an imbalance. Both activities are not normal and produce an undesirable effect, ultimately type 2 diabetes.”

Scientists have long known that glucagon is increased in type 2 diabetes, but had no explanation for this phenomenon. The team’s finding of alpha cell multiplication in the damaged islets of Langerhans is therefore intriguing. “Finally we have a very plausible explanation of the increased glucagon levels,” Dr. Folli said.

The study’s first author is Rodolfo Guardado-Mendoza M.D., Ph.D., postdoctoral fellow with Dr. Folli and Ralph Defronzo, M.D., in the Health Science Center’s Department of Medicine/ Division of Diabetes. Collaborating entities included the Southwest Foundation for Biomedical Research, the Health Science Center Department of Surgery, and Mexican and Italian centers.

A grant from the National Institutes of Health was recently awarded to Dr. Folli to support this research program, in collaboration with Anthony Comuzzie, Ph.D., of the Southwest Foundation for Biomedical Research.

About the UT Health Science Center at San Antonio:

The University of Texas Health Science Center at San Antonio is the leading research institution in South Texas and one of the major health sciences universities in the world. With an operating budget of $668 million, the Health Science Center is the chief catalyst for the $16.3 billion biosciences and health care sector in San Antonio’s economy. The Health Science Center has had an estimated $36 billion impact on the region since inception and has expanded to six campuses in San Antonio, Laredo, Harlingen and Edinburg. More than 26,400 graduates (physicians, dentists, nurses, scientists and other health professionals) serve in their fields, including many in Texas. Health Science Center faculty are international leaders in cancer, cardiovascular disease, diabetes, aging, stroke prevention, kidney disease, orthopaedics, research imaging, transplant surgery, psychiatry and clinical neurosciences, pain management, genetics, nursing, dentistry and many other fields.

Will Sansom | Newswise Science News
Further information:
http://www.uthscsa.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>