Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find new pieces of hearing puzzle

09.05.2012
Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have gained important new insights into how our sense of hearing works. Their findings promise new avenues for scientists to understand what goes wrong when people experience deafness. Their findings are published in Royal Society Open Biology, a new open access journal.

The team was led by Prof John Wood of UCL (University College London). Professor Wood explains: "As many people will already know, our ears are filled with tiny hair cells that move in response to the pressure of a sound wave. But exactly what happens within cells to turn that movement into an electrical signal that our brains' can interpret as sound has been puzzling scientists for decades. Our findings have given us some new insights into the puzzle."

The UCL team found that when mice lack two proteins, called TRPC3 and TRPC6, they experience about an 80% drop in their ability to detect high frequency sounds. Intriguingly, the loss of these two proteins also makes the mice slightly less sensitive to light touch sensations. When the mice that lack these proteins are brushed lightly, a third of the nerve cells which would normally fire remain inactive. This finding suggests an important link between how our bodies sense touch and sound.

Only when both TRPC3 and TRPC6 were absent was the mice's hearing and sense of touch impaired; the loss of each protein on its own had no behavioural effect on the mice. This suggests that the proteins are only parts of a more complex mechanism used in detecting sound and touch.

Professor Wood continues: "We are still a long way from a complete understanding of touch and hearing but this is a really exciting lead. Our next step is to find out what other proteins are involved in this mechanism and how they all interact. Hopefully then, once we know how the mechanism works in people who can hear, we can understand what goes wrong in people who can't."

The two proteins, TRPC3 and TRPC6, seem to be able to make a pressure-sensitive ion channel in some cells but not others. In response to tiny pressures, this channel would allow the flow of electrical signals but seems to require some, as yet uncharacterised, additional factor. This research adds to our knowledge of the potential components required for sound transduction in hair cells and provides us with molecular tools to find other interacting proteins that may play a crucial role in hearing.

Professor Wood received the funding to do this work as part of a Longer and Larger award (LoLa) from BBSRC. These provide leading research teams with the time and resources to tackle major scientific questions.

Professor Douglas Kell, BBSRC Chief Executive, said, "Human biology still holds many secrets and there are big gaps in our understanding of even fundamental processes like touch, pain and hearing. As scientists invent new techniques and technologies we are able to investigate the fundamentals of human biology in exciting new ways. This is crucial because only by deepening our understanding of how our bodies work can we find new ways of helping people when things go wrong."

Mike Davies | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>