Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find new pieces of hearing puzzle

09.05.2012
Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have gained important new insights into how our sense of hearing works. Their findings promise new avenues for scientists to understand what goes wrong when people experience deafness. Their findings are published in Royal Society Open Biology, a new open access journal.

The team was led by Prof John Wood of UCL (University College London). Professor Wood explains: "As many people will already know, our ears are filled with tiny hair cells that move in response to the pressure of a sound wave. But exactly what happens within cells to turn that movement into an electrical signal that our brains' can interpret as sound has been puzzling scientists for decades. Our findings have given us some new insights into the puzzle."

The UCL team found that when mice lack two proteins, called TRPC3 and TRPC6, they experience about an 80% drop in their ability to detect high frequency sounds. Intriguingly, the loss of these two proteins also makes the mice slightly less sensitive to light touch sensations. When the mice that lack these proteins are brushed lightly, a third of the nerve cells which would normally fire remain inactive. This finding suggests an important link between how our bodies sense touch and sound.

Only when both TRPC3 and TRPC6 were absent was the mice's hearing and sense of touch impaired; the loss of each protein on its own had no behavioural effect on the mice. This suggests that the proteins are only parts of a more complex mechanism used in detecting sound and touch.

Professor Wood continues: "We are still a long way from a complete understanding of touch and hearing but this is a really exciting lead. Our next step is to find out what other proteins are involved in this mechanism and how they all interact. Hopefully then, once we know how the mechanism works in people who can hear, we can understand what goes wrong in people who can't."

The two proteins, TRPC3 and TRPC6, seem to be able to make a pressure-sensitive ion channel in some cells but not others. In response to tiny pressures, this channel would allow the flow of electrical signals but seems to require some, as yet uncharacterised, additional factor. This research adds to our knowledge of the potential components required for sound transduction in hair cells and provides us with molecular tools to find other interacting proteins that may play a crucial role in hearing.

Professor Wood received the funding to do this work as part of a Longer and Larger award (LoLa) from BBSRC. These provide leading research teams with the time and resources to tackle major scientific questions.

Professor Douglas Kell, BBSRC Chief Executive, said, "Human biology still holds many secrets and there are big gaps in our understanding of even fundamental processes like touch, pain and hearing. As scientists invent new techniques and technologies we are able to investigate the fundamentals of human biology in exciting new ways. This is crucial because only by deepening our understanding of how our bodies work can we find new ways of helping people when things go wrong."

Mike Davies | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>