Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Find Organizing Principle for the Sense of Smell

The fact that certain smells cause us pleasure or disgust would seem to be a matter of personal taste.

But new research at the Weizmann Institute of Science shows that odors can be rated on a scale of pleasantness, and this turns out to be an organizing principle for the way we experience smell.

The findings, which appeared today in Nature Neuroscience, reveal a correlation between the response of certain nerves to particular scents and the pleasantness of those scents. Based on this correlation, the researchers could tell by measuring the nerve responses whether a subject found a smell pleasant or unpleasant.

Our various sensory organs have evolved patterns of organization that reflect the type of input they receive. Thus the receptors in the retina, in the back of the eye, are arranged spatially for efficiently mapping out visual coordinates. The structure of the inner ear, on the other hand, is set up according to a tonal scale. But the organizational principle for our sense of smell has remained a mystery: Scientists have not even been sure if there is a scale that determines the organization of our smell organ, much less how the arrangement of smell receptors on the membranes in our nasal passages might reflect such a scale.

A team headed by Prof. Noam Sobel of the Weizmann Institute’s Department of Neurobiology set out to search for the principle of organization for smell. Hints that the answer could be tied to pleasantness had been seen in research labs around the world, including that of Prof. Sobel, who had previously found a connection between the chemical structure of an odor molecule and its place on a pleasantness scale. Prof. Sobel and his team thought that smell receptors in the nose—of which there are some 400 subtypes—could be arranged on the nasal membrane according to this scale. This hypothesis goes against the conventional view, which claims that the various smell receptors are mixed—distributed evenly, but randomly, around the membrane.

In the experiment, the researchers inserted electrodes into the nasal passages of volunteers and measured the nerves’ responses to different smells in various sites. Each measurement actually captured the response of thousands of smell receptors, as these are densely packed on the membrane. The scientists found that the strength of the nerve signal varies from place to place on the membrane. It appeared that the receptors are not evenly distributed, but rather are grouped into distinct sites, each engaging most strongly with a particular type of scent.

Further investigation showed that the intensity of a reaction was linked to the odor’s place on the pleasantness scale. A site where the nerves reacted strongly to a certain agreeable scent also showed strong reactions to other pleasing smells and vice versa: The nerves in an area with a high response to an unpleasant odor reacted similarly to other disagreeable smells. The implication is that a pleasantness scale is, indeed, an organizing principle for our smell organ.

But does our sense of smell really work according to this simple principle? Natural odors are composed of a large number of molecules—roses, for instance, release 172 different odor molecules. Nonetheless, says Prof. Sobel, the most dominant of those determine which sites on the membrane will react the most strongly, while the other substances make secondary contributions to the scent.

“We uncovered a clear correlation between the pattern of nerve reaction to various smells and the pleasantness of those smells. As in sight and hearing, the receptors for our sense of smell are spatially organized in a way that reflects the nature of the sensory experience,” says Prof. Sobel. In addition, the findings confirm the idea that our experience of smells as nice or nasty is hardwired into our physiology, and not purely the result of individual preference. Prof. Sobel doesn’t discount the idea that individuals may experience smells differently, and theorizes that cultural context and personal experience may cause a certain amount of reorganization in smell perception over a person’s lifetime.

This research was carried out by Drs. Hadas Lapid, Sagit Shushan, and Anton Plotkin in the group of Prof. Noam Sobel; Dr. Elad Schneidman of the Weizmann Institute’s Department of Neurobiology; Dr. Yehudah Roth of Wolfson Hospital in Holon; Prof. Hillary Voet of the Hebrew University of Jerusalem; and Prof. Thomas Hummel of Dresden University, Germany.

Prof. Noam Sobel’s research is supported by Regina Wachter, NY; the estate of Lore Lennon; the James S. McDonnell Foundation 21st Century Science Scholar in Understanding Human Cognition Program; the Minerva Foundation; and the European Research Council.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world’s top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>