Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find molecular trigger that helps prevent aging and disease

20.11.2009
Researchers at Mount Sinai School of Medicine set out to address a question that has been challenging scientists for years: How do dietary restriction—and the reverse, overconsumption—produce protective effects against aging and disease?

An answer lies in a two-part study led by Charles Mobbs, PhD, Professor of Neuroscience and of Geriatrics and Palliative Medicine at Mount Sinai School of Medicine, published in the November 17 edition of the journal Public Library of Science Biology. The study, titled "Role of CBP and SATB-1 in Aging, Dietary Restriction, and Insulin-Like Signaling," examines how dietary restriction and a high-caloric diet influence biochemical responses.

Dr. Mobbs and his colleagues unraveled a molecular puzzle to determine that within certain parameters, a lower-calorie diet slows the development of some age-related conditions such as Alzheimer's disease, as well as the aging process. How the diet is restricted—whether fats, proteins or carbohydrates are cut—does not appear to matter. "It may not be about counting calories or cutting out specific nutrients," said Dr. Mobbs, "but how a reduction in dietary intake impacts the glucose metabolism, which contributes to oxidative stress." Meanwhile, a high calorie diet may accelerate age-related disease by promoting oxidative stress.

Dietary restriction induces a transcription factor called CREB-binding protein (CBP), which controls the activity of genes that regulate cellular function. By developing drugs that mimic the protective effects of CBP – those usually caused by dietary restriction – scientists may be able to extend lifespan and reduce vulnerability to age-related illnesses.

"We discovered that CBP predicts lifespan and accounts for 80 percent of lifespan variation in mammals," said Dr. Mobbs. "Finding the right balance is key; only a 10 percent restriction will produce a small increase in lifespan, whereas an 80 percent restriction will lead to a shorter life due to starvation."

The team found an optimal dietary restriction, estimated to be equivalent to a 30 percent caloric reduction in mammals, increased lifespan over 50 percent while slowing the development of an age-related pathology similar to Alzheimer's disease.

The first part of the study looked at C. elegans, a species of roundworm, that were genetically altered to develop Alzheimer's disease-like symptoms. Dr. Mobbs and his team reduced the roundworms' dietary intake by diluting the bacteria the worms consume. In these types of roundworms, human beta amyloid peptide, which contributes to plaque buildup in Alzheimer's disease, is expressed in muscle, which becomes paralyzed as age progresses. This model allowed researchers to readily measure how lifespan and disease burden were simultaneously improved through dietary restriction.

The researchers found that when dietary restriction was maintained throughout the worms' adulthood, lifespan increased by 65 percent and the Alzheimer's disease-related paralysis decreased by about 50 percent.

"We showed that dietary restriction activates CBP in a roundworm model, and when we blocked this activation, we blocked all the protective effects of dietary restriction," said Dr. Mobbs. "It was the result of blocking CBP activation, which inhibited all the protective effects of dietary restriction, that confirmed to us that CBP plays a key role in mediating the protective effects of dietary restriction on lifespan and age-related disease. "

In the second part of study, Dr. Mobbs and his team looked at the other end of this process: What happens to CBP in a high-calorie diet that has led to diabetes, a disease in which glucose metabolism is impaired? Researchers examined mice and found that diabetes reduces activation of CBP, leading Dr. Mobbs to conclude that a high-calorie diet that leads to diabetes would have the opposite effect of dietary restriction and would accelerate aging.

Dr. Mobbs hypothesizes that dietary restriction induces CBP by blocking glucose metabolism, which produces oxidative stress, a cellular process that leads to tissue damage and also promotes cancer cell growth. Interestingly, dietary restriction triggers CBP for as long as the restriction is maintained, suggesting that the protective effects may wear off if higher dietary intake resumes. CBP responds to changes in glucose within hours, indicating genetic communications respond quickly to fluctuations in dietary intake.

"Our next step is to understand the exact interactions of CBP with other transcription factors that mediate its protective effects with age," said Dr. Mobbs. "If we can map out these interactions, we could then begin to produce more targeted drugs that mimic the protective effects of CBP."

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses The Mount Sinai Hospital and Mount Sinai School of Medicine. The Mount Sinai Hospital is one of the nation's oldest, largest and most-respected voluntary hospitals. Founded in 1852, Mount Sinai today is a 1,171-bed tertiary-care teaching facility that is internationally acclaimed for excellence in clinical care. Last year, nearly 50,000 people were treated at Mount Sinai as inpatients, and there were nearly 450,000 outpatient visits to the Medical Center.

Mount Sinai School of Medicine is internationally recognized as a leader in groundbreaking clinical and basic science research, as well as having an innovative approach to medical education. With a faculty of more than 3,400 in 38 clinical and basic science departments and centers, Mount Sinai ranks among the top 20 medical schools in receipt of National Institute of Health (NIH) grants. For more information, please visit www.mountsinai.org.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mountsinai.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>